MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 165 )
  • See question detail

    Lightning Farron:I don't understand

  • See question detail

    Lightning Farron:\(2\left(4x+1\right)+\dfrac{108x-73}{\left(5-12x\right)\sqrt{3x-2}-20x+13}>0\).Why?

  • See question detail

    Lê Quốc Trần Anh that's right.It used many users to swear for me.

    I used to remind but it unheard.

  • See question detail

    KEITA FC 8C:MAY KHONG NEN TU HOI TU TRA LOI

    MAY LAM THE KHONG DUOC GI DAU

  • See question detail

    A hour Pump Q can fill a water is:

               \(1:15=\dfrac{1}{15}\)(tank)

    A hour Pump P can fill a water is:

            \(1:12=\dfrac{1}{12}\)(tank)

    A hour Pump P and Pump Q can fill a water is:

        \(\dfrac{1}{12}+\dfrac{1}{15}=\dfrac{3}{20}\)(tank)

    The time for Pump P and Pump Q fill 60% full is:

       \(\dfrac{3}{5}:\dfrac{3}{20}=4\)(hours)

    The time for Pump Q fill 40% full is:

             \(\dfrac{2}{5}:\dfrac{1}{15}=6\)(hours)

    The number of hour for it take to completely fill the tank is:

       6+4=10(hours)

    Answer:10 hours

      

        

  • See question detail

    With D=1 \(\Rightarrow\)21\(\times\)151=8071\(\Rightarrow3171=8071\)(unsatisfactory)

    With D=3\(\Rightarrow23\times351=8073\Rightarrow8073=8073\)(satisfy)

    With D\(\ge5\)\(\Rightarrow2D\times D51\ge25\times551=13775>8073\)(unsatisfactory)

  • See question detail

    Apply extend Bunyakovsky inequality ,we have:

    \(a^3+b^3+c^3\)\(=\dfrac{a^4}{a}+\dfrac{b^4}{b}+\dfrac{c^4}{c}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\dfrac{81}{a+b+c}\)                                              (1)                                      

    Other way:

    \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow27\ge\left(a+b+c\right)^2\)\(\Rightarrow a+b+c\le\sqrt{27}=3\sqrt{3}\)                 (2)

    From (1) and (2)\(\Rightarrow a^3+b^3+c^3\ge\dfrac{81}{a+b+c}\ge\dfrac{81}{3\sqrt{3}}=9\sqrt{3}\)

    \(\Rightarrow min_M=9\sqrt{3}\) when a=b=c=\(\sqrt{3}\) because a,b,c\(\ge-1\)

  • See question detail

     KEITA FC 8C,Fc Alan Walker:Tao khuyen may khong nen tu hoi tu tra loi nhu the

  • See question detail

    We have:\(\left\{{}\begin{matrix}a+b=11\\a.b=24\end{matrix}\right.\)\(\Rightarrow ab+a+b=35\Rightarrow ab+a+b+1=36\Rightarrow\left(a+1\right)\left(b+1\right)=36\)

    We have table:(because a,b same kind so not consider a,b negative)

    a+1 1 2 3 4 6 9 12 18 36
    b+1 36 18 12 9 6 4 3 2 1
    a 0 1 2 3 5 8 11 17 35
    b 35(unsatisfactory) 17(unsatisfactory) 1(unsatisfactory) 2(unsatisfactory) 5(unsatisfactory) 3(satisfy) 2(unsatisfactory) 1(unsatisfactory) 0(unsatisfactory)

    So the absolute difference between those two number is:\(\left|8-3\right|=\left|5\right|=5\)

  • See question detail

    Put the number of nikels,dimes and quarters is:a,b,c

    We have:\(\left\{{}\begin{matrix}a+b+c=37\\a-b=4\\c-a=2\end{matrix}\right.\)\(\Rightarrow\left(a+b+c\right)+\left(a-b\right)+\left(c-a\right)=43\)\(\Rightarrow a+2c=43\).

    Because \(c-a=2\) so \(\left(a+2c\right)+\left(c-a\right)=45\Rightarrow3c=45\Rightarrow c=15\Rightarrow\left\{{}\begin{matrix}a=13\\b=9\end{matrix}\right.\)

    Answer:The number of nickels is 13

                  The number of dimes is:9

                  The number of quarters is:15

  • See question detail

    This is a rectangular but you draw wrong.

    You must draw some line equal cut line.

    You draw shorter line than right picture.

  • See question detail

    *,There are 4 Sunday days in April

    *,Tomorow is:30th                         Yesterday is:28th

    *,The Sunday week yesterday is:12-7=5th

  • See question detail

    Because x+y creates 1 part 2 of a diagonal line of the square so \(x+y=\sqrt{\dfrac{4}{2}}=\sqrt{2}\)

    So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\Rightarrow z=2\)

    Answer:The value of z is:2

  • See question detail

    Chúng ta có: x + y =\(\sqrt{\dfrac{4}{2}}=\sqrt{2}\) because x+y creates 1 part 2 of a diagonal line

    So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\)\(\Rightarrow z=2\)

    Answer:z=2

  • See question detail

    The first number:3=1.3

    The second number:6=3.2

    The third number:9=3.3

    .........

    So the 99th number of row is:

       3.99=297

    Answer:297

  • See question detail

    The side of the hexagon is:

       \(1\times2\div2=1\)(unit)

    The perimeter of a semicircle is:

       \(\dfrac{1\times3,14}{2}=1,57\)

    The perimeter of the figure formed by these semicircle is:

          \(1,57\times6=9,42\approx9,4\)

    Answer:9,4

  • See question detail

    We have:\(99.45.15.25+13-\left(25.99.3.5.9.5\right)\)

    \(=99.45.15.25+13-25.99.15.45\)

    \(=13\)

    Answer:13

  • See question detail

    Put the edge of square is:x

    \(\pi\) have a unit is inch

     The area of the big circle is:

       12 x 12 =144(\(\pi\))

    The edge of square (or diameter of the small circle) is:

    \(x=\sqrt{\dfrac{\left(12.2\right)^2}{2}}=\sqrt{\dfrac{576}{2}}=\sqrt{288}\)(inches)

    The area of the small circle is:

       \(\left(\dfrac{\sqrt{288}}{2}\right)^2=72\left(\pi\right)\)

    The area of the shaded region between the two circles is:

       144-72=72\(\left(\pi\right)\)

    Answer:72\(\pi\)

  • See question detail

    A(10,2) B(4,-2)

    The length of diamter AB is

      \(AB=\sqrt{4^2+6^2}=\sqrt{16+36}=\sqrt{52}\)

    The area of a circle that has diameter is:

       \(\left(\dfrac{\sqrt{52}}{2}\right)^2.3,14\)\(=\dfrac{52}{4}\pi=13\pi\)

    Answer:13\(\pi\)

  • See question detail

    We have:\(n^3-1\equiv-1\)(mod n)

    \(\Rightarrow\left(n^3-1\right)^{111}\equiv\left(-1\right)^{111}\)(mod n)

    \(\Rightarrow\left(n^3-1\right)^{111}\equiv-1\)(mod n)                                                                   (1)

    Other way:\(n^2-1\equiv-1\)(mod n)

    \(\Rightarrow\left(n^2-1\right)^{333}\equiv\left(-1\right)^{333}\)(mod n)

    \(\Rightarrow\left(n^2-1\right)^{333}\equiv-1\)(mod n)                                                                   (2)

    From (1) and (2)\(\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv\left(-1\right).\left(-1\right)\)(mod n)

    \(\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv1\)(mod n)

    So the surplus when divide (n3-1)111.(n2-1)333 for n is:1

  • First
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • Last
© HCEM 10.1.29.240
Crafted with by HCEM