-
See question detail
Lightning Farron:I don't understand
-
See question detail
Lightning Farron:\(2\left(4x+1\right)+\dfrac{108x-73}{\left(5-12x\right)\sqrt{3x-2}-20x+13}>0\).Why?
-
See question detail
Lê Quốc Trần Anh that's right.It used many users to swear for me.
I used to remind but it unheard.
-
See question detail
KEITA FC 8C:MAY KHONG NEN TU HOI TU TRA LOI
MAY LAM THE KHONG DUOC GI DAU
-
See question detail
A hour Pump Q can fill a water is:
\(1:15=\dfrac{1}{15}\)(tank)
A hour Pump P can fill a water is:
\(1:12=\dfrac{1}{12}\)(tank)
A hour Pump P and Pump Q can fill a water is:
\(\dfrac{1}{12}+\dfrac{1}{15}=\dfrac{3}{20}\)(tank)
The time for Pump P and Pump Q fill 60% full is:
\(\dfrac{3}{5}:\dfrac{3}{20}=4\)(hours)
The time for Pump Q fill 40% full is:
\(\dfrac{2}{5}:\dfrac{1}{15}=6\)(hours)
The number of hour for it take to completely fill the tank is:
6+4=10(hours)
Answer:10 hours
-
See question detail
With D=1 \(\Rightarrow\)21\(\times\)151=8071\(\Rightarrow3171=8071\)(unsatisfactory)
With D=3\(\Rightarrow23\times351=8073\Rightarrow8073=8073\)(satisfy)
With D\(\ge5\)\(\Rightarrow2D\times D51\ge25\times551=13775>8073\)(unsatisfactory)
-
See question detail
Apply extend Bunyakovsky inequality ,we have:
\(a^3+b^3+c^3\)\(=\dfrac{a^4}{a}+\dfrac{b^4}{b}+\dfrac{c^4}{c}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\dfrac{81}{a+b+c}\) (1)
Other way:
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Rightarrow27\ge\left(a+b+c\right)^2\)\(\Rightarrow a+b+c\le\sqrt{27}=3\sqrt{3}\) (2)
From (1) and (2)\(\Rightarrow a^3+b^3+c^3\ge\dfrac{81}{a+b+c}\ge\dfrac{81}{3\sqrt{3}}=9\sqrt{3}\)
\(\Rightarrow min_M=9\sqrt{3}\) when a=b=c=\(\sqrt{3}\) because a,b,c\(\ge-1\)
-
See question detail
KEITA FC 8C,Fc Alan Walker:Tao khuyen may khong nen tu hoi tu tra loi nhu the
-
See question detail
We have:\(\left\{{}\begin{matrix}a+b=11\\a.b=24\end{matrix}\right.\)\(\Rightarrow ab+a+b=35\Rightarrow ab+a+b+1=36\Rightarrow\left(a+1\right)\left(b+1\right)=36\)
We have table:(because a,b same kind so not consider a,b negative)
a+1 1 2 3 4 6 9 12 18 36 b+1 36 18 12 9 6 4 3 2 1 a 0 1 2 3 5 8 11 17 35 b 35(unsatisfactory) 17(unsatisfactory) 1(unsatisfactory) 2(unsatisfactory) 5(unsatisfactory) 3(satisfy) 2(unsatisfactory) 1(unsatisfactory) 0(unsatisfactory) So the absolute difference between those two number is:\(\left|8-3\right|=\left|5\right|=5\)
-
See question detail
Put the number of nikels,dimes and quarters is:a,b,c
We have:\(\left\{{}\begin{matrix}a+b+c=37\\a-b=4\\c-a=2\end{matrix}\right.\)\(\Rightarrow\left(a+b+c\right)+\left(a-b\right)+\left(c-a\right)=43\)\(\Rightarrow a+2c=43\).
Because \(c-a=2\) so \(\left(a+2c\right)+\left(c-a\right)=45\Rightarrow3c=45\Rightarrow c=15\Rightarrow\left\{{}\begin{matrix}a=13\\b=9\end{matrix}\right.\)
Answer:The number of nickels is 13
The number of dimes is:9
The number of quarters is:15
-
See question detail
This is a rectangular but you draw wrong.
You must draw some line equal cut line.
You draw shorter line than right picture.
-
See question detail
*,There are 4 Sunday days in April
*,Tomorow is:30th Yesterday is:28th
*,The Sunday week yesterday is:12-7=5th
-
See question detail
Because x+y creates 1 part 2 of a diagonal line of the square so \(x+y=\sqrt{\dfrac{4}{2}}=\sqrt{2}\)
So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\Rightarrow z=2\)
Answer:The value of z is:2
-
See question detail
Chúng ta có: x + y =\(\sqrt{\dfrac{4}{2}}=\sqrt{2}\) because x+y creates 1 part 2 of a diagonal line
So x+y=\(\sqrt{z}\Rightarrow\sqrt{2}=\sqrt{z}\)\(\Rightarrow z=2\)
Answer:z=2
-
See question detail
The first number:3=1.3
The second number:6=3.2
The third number:9=3.3
.........
So the 99th number of row is:
3.99=297
Answer:297
-
See question detail
The side of the hexagon is:
\(1\times2\div2=1\)(unit)
The perimeter of a semicircle is:
\(\dfrac{1\times3,14}{2}=1,57\)
The perimeter of the figure formed by these semicircle is:
\(1,57\times6=9,42\approx9,4\)
Answer:9,4
-
See question detail
We have:\(99.45.15.25+13-\left(25.99.3.5.9.5\right)\)
\(=99.45.15.25+13-25.99.15.45\)
\(=13\)
Answer:13
-
See question detail
Put the edge of square is:x
\(\pi\) have a unit is inch
The area of the big circle is:
12 x 12 =144(\(\pi\))
The edge of square (or diameter of the small circle) is:
\(x=\sqrt{\dfrac{\left(12.2\right)^2}{2}}=\sqrt{\dfrac{576}{2}}=\sqrt{288}\)(inches)
The area of the small circle is:
\(\left(\dfrac{\sqrt{288}}{2}\right)^2=72\left(\pi\right)\)
The area of the shaded region between the two circles is:
144-72=72\(\left(\pi\right)\)
Answer:72\(\pi\)
-
See question detail
The length of diamter AB is
\(AB=\sqrt{4^2+6^2}=\sqrt{16+36}=\sqrt{52}\)
The area of a circle that has diameter is:
\(\left(\dfrac{\sqrt{52}}{2}\right)^2.3,14\)\(=\dfrac{52}{4}\pi=13\pi\)
Answer:13\(\pi\)
-
See question detail
We have:\(n^3-1\equiv-1\)(mod n)
\(\Rightarrow\left(n^3-1\right)^{111}\equiv\left(-1\right)^{111}\)(mod n)
\(\Rightarrow\left(n^3-1\right)^{111}\equiv-1\)(mod n) (1)
Other way:\(n^2-1\equiv-1\)(mod n)
\(\Rightarrow\left(n^2-1\right)^{333}\equiv\left(-1\right)^{333}\)(mod n)
\(\Rightarrow\left(n^2-1\right)^{333}\equiv-1\)(mod n) (2)
From (1) and (2)\(\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv\left(-1\right).\left(-1\right)\)(mod n)
\(\Rightarrow\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\equiv1\)(mod n)
So the surplus when divide (n3-1)111.(n2-1)333 for n is:1