Let f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1f(x)=(x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)−1
We have:
f(a)=0+1+0−1=0f(a)=0+1+0−1=0
Similarity f(b)=0,f(c)=0f(b)=0,f(c)=0
f(x) is a degree of 2 and have 3 different solotutions (a, b, c) .
=> f(x) = 0
=> (x−a)(x−b)(c−a)(c−b)+(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)=1 Study Well !