MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 1 )
  • See question detail

    By Am-Gm inequality: \(abc+abc+1\ge3\sqrt[3]{a^2b^2c^2}=\dfrac{3abc}{\sqrt[3]{abc}}\ge\dfrac{9abc}{a+b+c}\)

    So we need to prove : \(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)( schur level 3 inequality ) ( proved)

    Equality occurs for a=b=c=1 

    c2 : Diriclet theorem \(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\) ( we can assume that)\(\Rightarrow c\left(a-1\right)\left(b-1\right)\ge0\)

    \(\Leftrightarrow abc\ge ac+bc-c\) . So we need to prove 

    \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

    \(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\) (true)  

  • View more →
Questions ( 0 )
  • View more →
© HCEM 10.1.29.240
Crafted with by HCEM