Prove that : \(A=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{n^2}< \dfrac{1}{4}\) ( n odd and n is greater than or equal to 3 )
For a + b + c = 0 . Prove that : \(a^3+b^3+c^3=0\)
1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 +5 x 6 + ... + 99 x 100 = 0
Find x :
Polynomial Analysis into Factors :
a , \(x^8+14x^4+1\)
b , \(x^8+98x^4+1\)
Prove that :
\(\dfrac{40^4+51^4+91^4}{79^4}=\dfrac{40^2+51^2+91^2}{79^2}\)
Compact expression :
\(B=\left(ab+bc+ca\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)