MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 23 )
  • See question detail

    Follow the pic of Kayasari Ryuunosuke :)

    \(\Rightarrow a=\sqrt{100}=10\left(cm\right)\)

    \(b=\sqrt{36}=6\left(cm\right)\)

    Pythagoras \(\Rightarrow\)\(c=\sqrt{10^2-6^2}=8\left(cm\right)\)

    \(\Rightarrow\)\(S_C=8^2=64\left(cm^2\right)\)

  • See question detail

    Condittion: \(3x+1\ne0\)

    \(\Rightarrow x\ne-\dfrac{1}{3}\)

    \(\dfrac{x-1}{3x+1}=\dfrac{1}{2}\)

    \(\Rightarrow2\left(x-1\right)=3x+1\)

    \(\Leftrightarrow2x-2=3x+1\)

    \(\Leftrightarrow2x-3x=1+2\)

    \(\Leftrightarrow-x=3\)

    \(\Leftrightarrow x=-3\) (satisfy)

  • See question detail

    \(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}+\dfrac{3-\sqrt{5}}{3+\sqrt{5}}\)

    \(=\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}+\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}\)

    \(=\dfrac{\left(3+\sqrt{5}+3-\sqrt{5}\right)\left(3+\sqrt{5}-3+\sqrt{5}\right)}{4}\)

    \(=\dfrac{6\cdot2\sqrt{5}}{4}=\dfrac{12\sqrt{5}}{4}=3\sqrt{5}\)

  • See question detail

    \(\left(100+1\right)\cdot100:2=5050\)

    Answer: A

  • See question detail

    Because \(\Delta ABC\) is a square triangle.

    \(\Rightarrow\)\(AB^2+AC^2=BC^2\) (Pytago)

    \(\Rightarrow BC=\sqrt{3^2+4^2}=5\)

    We have:
    \(AB\cdot AC=BC\cdot AH\)

    \(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2.4\left(cm\right)\)

    Answer: 2.4 cm

  • See question detail

    \(\Delta PQS\) has: \(PQ=PS\)

    \(\Rightarrow\)​\(\Delta PQS\) is an ​ isosceles triangle.

    \(\Rightarrow\)\(\widehat{PSQ}=\frac{180^0-\widehat{QPS}}{2}\)

    \(\Rightarrow\)\(\widehat{PSQ}=84^0\)

    \(\Rightarrow\)\(\widehat{PSR}=180^0-84^0=96^0\)

    \(\Delta PSR\) has: \(SP=SR\)

    \(\Rightarrow\)\(\Delta PSR\) is an isosceles triangle

    \(\Rightarrow\)\(\widehat{SPR}=\frac{180^0-\widehat{PSR}}{2}\)

    \(\Rightarrow\)\(\widehat{SPR}=42^0\)

    \(\Rightarrow\)\(\widehat{QPR}=12^0+42^0=54^0\)

    Answer: C.

  • See question detail

    \(\Delta{AOC}\) have:

    \(\widehat{A}+\widehat{C}+\widehat{AOC}=180^0\) (1)

    \(\Delta{BOD}\) have:

    \(\widehat{B}+\widehat{D}+\widehat{BOD}=180^0\) (2)

    \(\widehat{AOC}=\widehat{BOD}\) (vertically opposite angles) (3)

    (1)(2)(3)

    \(\Rightarrow\)\(\widehat{A}+\widehat{C}=\widehat{B}+\widehat{D}\)


     

  • See question detail

    \(3AA1⋮9\)

    \(\Leftrightarrow\left(3+1+A+A\right)⋮9\)

    \(\Leftrightarrow\left(4+2A\right)⋮9\)

    \(\Leftrightarrow A=7\)

  • See question detail

    According to the problem, we have:

    \(\widehat{A} = 3 \widehat{B}\)\(\Rightarrow\)\(\widehat{B}=\frac{\widehat{A}}{3}\)  (1)

    \(\widehat{C}=2\widehat{A}\) (2)

    \(\widehat{A} + \widehat{B} + \widehat{C}=180^0\) (3)

    Change (1)(2) to (3) we have:

    \(\widehat{A} + \frac{\widehat{A}}{3}+2\widehat{A}=180^0\)

    \(\frac{10}{3}\widehat{A}=180^0\)

    \(\widehat{A} = 54^0\)

    \(\Rightarrow\) (C) is correct

  • See question detail

    Have: \(2\cdot2+3\cdot4+4\cdot3=28\left(wheels\right)\)in the garage

  • See question detail

    a) We have:

    \(3\left(2x-1\right)^2\ge0\forall x\)

    \(7\left(3y+5\right)^2\ge0\forall y\)

    \(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\7\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-1=0\\3y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

    Answer: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

    b) \(x^2+y^2-2x+10y+26=0\)

    \(\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)

    \(\left(x-1\right)^2+\left(y+5\right)^2=0\)

    We have:

    \(\left(x-1\right)^2\ge0\forall x\)

    \(\left(y+5\right)^2\ge0\forall x\)

    \(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

    Answer: \(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

  • See question detail

    To cut a wooden rod to 35 pieces, we must make 34 cuts.

    According to the problem, it takes 3 minutes to make 1 cut

    So: \(3\cdot34=102\left(minutes\right)\) to complete the cuts

  • See question detail

    a) 46;64

    b) We have:
    \(3=0+1+2\)

    \(6=1+2+3\)

    \(11=2+3+6\)

    \(\Rightarrow6+11+20=37\)

  • See question detail

    Because:

    +) Kate is the 18th from the front:

    \(\Rightarrow\)Kate is the 18th child (from the front)

    +) John is the 32nd from the back:
    ​​\(\Rightarrow\)John is the 8th child (from the front)

    \(\Rightarrow\)There are 9 children between Kate and John

  • See question detail

    There are 6 ways she can arrange them:

    Way 1: red, pink, yellow

    Way 2: red, yellow, pink

    Way 3: pink, red, yellow

    Way 4: pink, yellow, red

    Way 5: yellow, red, pink

    Way 6: yellow, pink, red

  • See question detail

    Mai's stamps: \(40+7=47\left(stamps\right)\)

    Answer: Mai has 47 stamps

  • See question detail

    Mai's notebooks: \(4+3=7\left(notebooks\right)\)

    James's notebooks: \(4+7=11\left(notebooks\right)\)

    Answer: James has 11 notebooks

  • See question detail

    Mai's stamps: 40 + 7 = 47 (stamps)

  • See question detail

    The total height of 2 boys: \(131.6\cdot2=263.2\left(cm\right)\)

    The total height of 4 girls: \(128.3\cdot4=513.2\left(cm\right)\)

    The total height of all children: \(263.2+513.2=776.4\left(cm\right)\)

    All children: \(2+4=6\left(children\right)\)

    The average height of all children: \(\dfrac{776.4}{6}=129.4\left(cm\right)\)

  • See question detail

    The legs of 4 horses: \(4\cdot4=16\left(legs\right)\)

    The legs of  11 people: \(11\cdot2=22\left(legs\right)\)

    The total legs: \(16+22=38\left(legs\right)\)

  • View more →
Questions ( 0 )
  • View more →
© HCEM 10.1.29.225
Crafted with by HCEM