-
See question detail
Follow the pic of Kayasari Ryuunosuke :)
\(\Rightarrow a=\sqrt{100}=10\left(cm\right)\)
\(b=\sqrt{36}=6\left(cm\right)\)
Pythagoras \(\Rightarrow\)\(c=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(\Rightarrow\)\(S_C=8^2=64\left(cm^2\right)\)
-
See question detail
Condittion: \(3x+1\ne0\)
\(\Rightarrow x\ne-\dfrac{1}{3}\)
\(\dfrac{x-1}{3x+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x-1\right)=3x+1\)
\(\Leftrightarrow2x-2=3x+1\)
\(\Leftrightarrow2x-3x=1+2\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\) (satisfy)
-
See question detail
\(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}+\dfrac{3-\sqrt{5}}{3+\sqrt{5}}\)
\(=\dfrac{\left(3+\sqrt{5}\right)^2}{9-5}+\dfrac{\left(3-\sqrt{5}\right)^2}{9-5}\)
\(=\dfrac{\left(3+\sqrt{5}+3-\sqrt{5}\right)\left(3+\sqrt{5}-3+\sqrt{5}\right)}{4}\)
\(=\dfrac{6\cdot2\sqrt{5}}{4}=\dfrac{12\sqrt{5}}{4}=3\sqrt{5}\)
-
See question detail
\(\left(100+1\right)\cdot100:2=5050\)
Answer: A
-
See question detail
Because \(\Delta ABC\) is a square triangle.
\(\Rightarrow\)\(AB^2+AC^2=BC^2\) (Pytago)
\(\Rightarrow BC=\sqrt{3^2+4^2}=5\)
We have:
\(AB\cdot AC=BC\cdot AH\)\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2.4\left(cm\right)\)
Answer: 2.4 cm
-
See question detail
\(\Delta PQS\) has: \(PQ=PS\)
\(\Rightarrow\)\(\Delta PQS\) is an isosceles triangle.
\(\Rightarrow\)\(\widehat{PSQ}=\frac{180^0-\widehat{QPS}}{2}\)
\(\Rightarrow\)\(\widehat{PSQ}=84^0\)
\(\Rightarrow\)\(\widehat{PSR}=180^0-84^0=96^0\)
\(\Delta PSR\) has: \(SP=SR\)
\(\Rightarrow\)\(\Delta PSR\) is an isosceles triangle
\(\Rightarrow\)\(\widehat{SPR}=\frac{180^0-\widehat{PSR}}{2}\)
\(\Rightarrow\)\(\widehat{SPR}=42^0\)
\(\Rightarrow\)\(\widehat{QPR}=12^0+42^0=54^0\)
Answer: C.
-
See question detail
\(\Delta{AOC}\) have:
\(\widehat{A}+\widehat{C}+\widehat{AOC}=180^0\) (1)
\(\Delta{BOD}\) have:
\(\widehat{B}+\widehat{D}+\widehat{BOD}=180^0\) (2)
\(\widehat{AOC}=\widehat{BOD}\) (vertically opposite angles) (3)
(1)(2)(3)
\(\Rightarrow\)\(\widehat{A}+\widehat{C}=\widehat{B}+\widehat{D}\)
-
See question detail
\(3AA1⋮9\)
\(\Leftrightarrow\left(3+1+A+A\right)⋮9\)
\(\Leftrightarrow\left(4+2A\right)⋮9\)
\(\Leftrightarrow A=7\)
-
See question detail
According to the problem, we have:
\(\widehat{A} = 3 \widehat{B}\)\(\Rightarrow\)\(\widehat{B}=\frac{\widehat{A}}{3}\) (1)
\(\widehat{C}=2\widehat{A}\) (2)
\(\widehat{A} + \widehat{B} + \widehat{C}=180^0\) (3)
Change (1)(2) to (3) we have:
\(\widehat{A} + \frac{\widehat{A}}{3}+2\widehat{A}=180^0\)
\(\frac{10}{3}\widehat{A}=180^0\)
\(\widehat{A} = 54^0\)
\(\Rightarrow\) (C) is correct
-
See question detail
Have: \(2\cdot2+3\cdot4+4\cdot3=28\left(wheels\right)\)in the garage
-
See question detail
a) We have:
\(3\left(2x-1\right)^2\ge0\forall x\)
\(7\left(3y+5\right)^2\ge0\forall y\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\7\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-1=0\\3y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
Answer: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(x^2+y^2-2x+10y+26=0\)
\(\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\left(x-1\right)^2+\left(y+5\right)^2=0\)
We have:
\(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+5\right)^2\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
Answer: \(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
-
See question detail
To cut a wooden rod to 35 pieces, we must make 34 cuts.
According to the problem, it takes 3 minutes to make 1 cut
So: \(3\cdot34=102\left(minutes\right)\) to complete the cuts
-
See question detail
a) 46;64
b) We have:
\(3=0+1+2\)\(6=1+2+3\)
\(11=2+3+6\)
\(\Rightarrow6+11+20=37\)
-
See question detail
Because:
+) Kate is the 18th from the front:
\(\Rightarrow\)Kate is the 18th child (from the front)
+) John is the 32nd from the back:
\(\Rightarrow\)John is the 8th child (from the front)\(\Rightarrow\)There are 9 children between Kate and John
-
See question detail
There are 6 ways she can arrange them:
Way 1: red, pink, yellow
Way 2: red, yellow, pink
Way 3: pink, red, yellow
Way 4: pink, yellow, red
Way 5: yellow, red, pink
Way 6: yellow, pink, red
-
See question detail
Mai's stamps: \(40+7=47\left(stamps\right)\)
Answer: Mai has 47 stamps
-
See question detail
Mai's notebooks: \(4+3=7\left(notebooks\right)\)
James's notebooks: \(4+7=11\left(notebooks\right)\)
Answer: James has 11 notebooks
-
See question detail
Mai's stamps: 40 + 7 = 47 (stamps)
-
See question detail
The total height of 2 boys: \(131.6\cdot2=263.2\left(cm\right)\)
The total height of 4 girls: \(128.3\cdot4=513.2\left(cm\right)\)
The total height of all children: \(263.2+513.2=776.4\left(cm\right)\)
All children: \(2+4=6\left(children\right)\)
The average height of all children: \(\dfrac{776.4}{6}=129.4\left(cm\right)\)
-
See question detail
The legs of 4 horses: \(4\cdot4=16\left(legs\right)\)
The legs of 11 people: \(11\cdot2=22\left(legs\right)\)
The total legs: \(16+22=38\left(legs\right)\)
- View more →