-
See question detail
Apply inequality cauchy, we have:
⎧⎩⎨⎪⎪⎪⎪(b+c−a)+(a+c−b)≥2(b+c−a)(a+c−b)−−−−−−−−−−−−−−−−−√(a+c−b)+(a+b−c)≥2(a+c−b)(a+b−c)−−−−−−−−−−−−−−−−−√(a+b−c)+(b+c−a)≥2(a+b−c)(b+c−a)−−−−−−−−−−−−−−−−−√
⇒⎧⎩⎨⎪⎪⎪⎪2c≥2(b+c−a)(a+c−b)−−−−−−−−−−−−−−−−−√2a≥2(a+c−b)(a+b−c)−−−−−−−−−−−−−−−−−√2b≥2(a+b−c)(b+c−a)−−−−−−−−−−−−−−−−−√
⇒⎧⎩⎨⎪⎪c2≥(b+c−a)(a+c−b)a2≥(a+c−b)(a+b−c)b2≥(a+b−c)(b+c−a)
⇒(abc)2≥[(b+c−a)(a+c−b)(a+b−c)]2
⇒abc≥(b+c−a)(a+c−b)(a+b−c)
-
See question detail
The title must be: a + b = 2
(1st condition): a ≤
0, b ≥
0
=> a4≥0;b4≥0
We have: a + b = 2 with a4;b4∈Z
+
=> a4+b4≥a+b≥2
(proved)
(2nd condition): a ≥
0; b ≤
2: Do exactly as the 1st condition (proved)
So ............
-
See question detail
We have: a2+b2+c2≥ab+bc+ca
[a2+b2+c2≥ab+bc+ca⇔2(a2+b2+c2)≥2(ab+ac+ca)⇔(a−b)2+(b−c)2
≥0
(proved)]
=> a2+b2+c2+2ab+2bc+2ca≥ab+bc+ca
=> (a+b+c)2≥3(ab+ac+ca)
=> (a+b+c)3≥3(ab+ac+ca)
(proved)
-
See question detail
a4+b4≥a3b+ab3
<=> a4+b4−a3b−ab3≥0
<=> a3(a−b)−b3(a−b)≥0
<=> (a3−b3)(a−b)≥0
<=> (a−b)2(a2+ab+b2)≥0
Cause ⎧⎩⎨⎪⎪⎪⎪(a−b)2≥0∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0
-
See question detail
You have to have a condition : a,b>0
a) (a+b)2≥4ab
<=> a2+2ab+b2≥4ab
<=> a2−2ab+b2≥0
<=> (a−b)2≥0
(It's true)
=> (a+b)2≥4ab
b) Applying Cauchy's inequality , we have
a+b≥2ab−−√
Equation occur <=> a = b
-
See question detail
We have:
a2+b2+c2≥ab+bc+ca
Prove that it:
This inequality <=> 2a2+2b2+2c2≥2ab+2bc+2ca
<=> 2a2+2b2+2c2−2ab−2bc−2ca≥0
<=> (a−b)2+(b−c)2+(c−a)2≥0
(true)
So a2 + b2 + c2 ≥
ab + bc + ca
Apply this for the topic, we have:
a4+b4+c4≥(ab)2+(bc)2+(ca)2
(ab)2+(bc)2+(ca)2≥ab2c+a2bc+abc2=abc(a+b+c)
So a4+b4+c4≥abc(a+b+c)
-
See question detail
a+b+c = 0
=> (a+b+c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
We have: a2 + b2 + c2 ≥0
⇒2(ab+bc+ca)≤0⇔ab+bc+ca≤0
-
See question detail
8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3
⇔8(a3+b3+c3)≥2(a3+b3+c3)+3ab(a+b)+3bc(b+c)+3ca(c+a)
⇔
6(a3+b3+c3)≥3[ab(a+b)+bc(b+c)+ca(c+a)]
⇔
2a3+2b3+2c3≥ab(a+b)+bc(b+c)+ca(c+a)
We have: a3 + b3 ≥
a2b + ab2
Prove that the same way as the way of Kaya Renger to prove that: a4+b4≥a3b+ab3
So ⎧⎩⎨⎪⎪a3+b3≥ab(a+b)b3+c3≥bc(b+c)c3+a3≥ca(c+a)
So true.
=> 8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3
-
See question detail
Applying Cauchy's inequality , we have
(a4+1)+(b4+1)≥2a2+2b2=2(a2+b2)≥2.2ab=4ab
Equation occur <=> a = b = ±1
-
See question detail
Apply inequality Cauchy, we have:
a+b≥2ab−−√
⇒{a4+b4≥2a4b4−−−−√c4+d4≥2c4d4−−−−√
⇔a4+b4+c4+d4≥2a2b2+2c2d2=2[(ab)2+(cd)2]
But (ab)2+(cd)2≥2(ab)2⋅(cd)2−−−−−−−−−√=2abcd
⇔a4+b4+c4+d4≥2⋅2abcd=4abcd
-
See question detail
e have :
=x+289+1+x+586+1>x+883+1+x+1180+1
=x+9189+x+9186>x+9183+x+9180
=x+9189+x+9186−x+9183−x+9180>0
=(x+91)(189+186−183−180)>0
To 189+186−183−180
different 0
=x+91>0=x<−91
-
See question detail
We have :
x+149+1+x+347+1=x+545+1+x+743+1
x+5049+x+5047=x+5045+x+5043
x+5049+x+5047−x+5045−x+5043=0
(x+50)(149+147−145−143)=0
To 149+147−145−143
different 0
x+50=0
x=−50
-
See question detail
We have:
1n2+(n+1)2=12n2+2n+1=12⎛⎜ ⎜ ⎜⎝1n2+n+12⎞⎟ ⎟ ⎟⎠<12(1n2+n)=12(1n−1n+1)
Apply, we have:
15+113+125+...+1n2+(n+1)2<12(1−12)+12(13−14)+12(14−15)+...+12(1n−1n+1)=12(1−1n+1)<12
-
See question detail
Let me answer you uncle : DO NOT KNOW
-
See question detail
a , x2(x−1)+(x−1)=0
(x−1)(x2+1)=0
x=1
b , (x−2)(x2−16)=0
(x−2)(x−4)(x+4)=0
x=2,x=4,x=4
-
See question detail
tan(a)=12⇔a=26,5605118
⇒tan(90−2a)=tan(90−2⋅26,56505118)=34
-
See question detail
a , x8+14x4+1=(x4+1)2+12x4
Add and subtract 4x2(x4+1)
we have :
(x4+1)2+4x2(x4+1)+4x4−4x2(x4+1)+8x4
=(x4+1+2x2)2−4x2(x4+1−2x2)
=(x4+2x2+1)2−4x2(x2−1)2
=(x4+2x2+1)2−(2x3−2x)2
=(x4+2x3+2x2−2x+1)(x4−2x3+2x2+2x+1)
b , x8+98x4+1=(x4+1)2+96x4
=(x4+1)2+16x2(x4+1)+64x4−16x2(x4+1)+32x4
=(x4+1+8x2)2−16x2(x4+1−2x2)
=(x4+8x2+1)2−16x2(x2−1)2
=(x4+8x2+1)2−(4x3−4x)2
=(x4+4x3+8x2−4x+1)(x4−4x3+8x2+4x+1)
-
See question detail
We have : 2x−1x−1+1=1x−1
2x−1x−1+x−1x−1=1x−1
2x−1+x−1x−1=1x−1
3x−2x−1−1x−1=0
3x−2−1x−1=0
3x−3x−1=0
3(x−1)x−1=0
3=0
So the equation has no solution .
-
See question detail
We have : x2−5xx−5=5
x(x−5)x−5=5
x=5
So the experiment of the above equation is S={5}
-
See question detail
We have: 13=1;23=8;...;63=21613=1;23=8;...;63=216
=> # =73=343
- View more →