MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 29 )
  • See question detail

    Apply inequality cauchy, we have:

    ⎧⎩⎨⎪⎪⎪⎪(b+c−a)+(a+c−b)≥2(b+c−a)(a+c−b)−−−−−−−−−−−−−−−−−√(a+c−b)+(a+b−c)≥2(a+c−b)(a+b−c)−−−−−−−−−−−−−−−−−√(a+b−c)+(b+c−a)≥2(a+b−c)(b+c−a)−−−−−−−−−−−−−−−−−√

    ⇒⎧⎩⎨⎪⎪⎪⎪2c≥2(b+c−a)(a+c−b)−−−−−−−−−−−−−−−−−√2a≥2(a+c−b)(a+b−c)−−−−−−−−−−−−−−−−−√2b≥2(a+b−c)(b+c−a)−−−−−−−−−−−−−−−−−√

    ⇒⎧⎩⎨⎪⎪c2≥(b+c−a)(a+c−b)a2≥(a+c−b)(a+b−c)b2≥(a+b−c)(b+c−a)

    ⇒(abc)2≥[(b+c−a)(a+c−b)(a+b−c)]2

    ⇒abc≥(b+c−a)(a+c−b)(a+b−c)

  • See question detail

    The title must be: a + b = 2

    (1st condition): a ≤

     0, b ≥

     0

    => a4≥0;b4≥0

    We have: a + b = 2 with a4;b4∈Z

    +

    => a4+b4≥a+b≥2

     (proved)

    (2nd condition): a ≥

     0; b ≤

     2: Do exactly as the 1st condition (proved)

    So ............

  • See question detail

    We have: a2+b2+c2≥ab+bc+ca

    [a2+b2+c2≥ab+bc+ca⇔2(a2+b2+c2)≥2(ab+ac+ca)⇔(a−b)2+(b−c)2

    ≥0

     (proved)]

    => a2+b2+c2+2ab+2bc+2ca≥ab+bc+ca

    => (a+b+c)2≥3(ab+ac+ca)

    => (a+b+c)3≥3(ab+ac+ca)

     (proved)

  • See question detail

    a4+b4≥a3b+ab3

    <=> a4+b4−a3b−ab3≥0

    <=> a3(a−b)−b3(a−b)≥0

    <=> (a3−b3)(a−b)≥0

    <=> (a−b)2(a2+ab+b2)≥0

    Cause ⎧⎩⎨⎪⎪⎪⎪(a−b)2≥0∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0

  • See question detail

    You have to have a condition : a,b>0

    a) (a+b)2≥4ab

    <=> a2+2ab+b2≥4ab

    <=>  a2−2ab+b2≥0

    <=>  (a−b)2≥0

      (It's true)

    => (a+b)2≥4ab

    b) Applying Cauchy's inequality , we have

    a+b≥2ab−−√

    Equation occur <=> a = b

  • See question detail

    We have:

    a2+b2+c2≥ab+bc+ca

    Prove that it: 

    This inequality <=> 2a2+2b2+2c2≥2ab+2bc+2ca

    <=> 2a2+2b2+2c2−2ab−2bc−2ca≥0

    <=> (a−b)2+(b−c)2+(c−a)2≥0

     (true) 

    So a2 + b2 + c2 ≥

     ab + bc + ca

    Apply this for the topic, we have:

    a4+b4+c4≥(ab)2+(bc)2+(ca)2

    (ab)2+(bc)2+(ca)2≥ab2c+a2bc+abc2=abc(a+b+c)

    So a4+b4+c4≥abc(a+b+c)

  • See question detail

    a+b+c = 0

    => (a+b+c)2 = 0

    => a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

    We have: a2 + b2 + c2 ≥0

    ⇒2(ab+bc+ca)≤0⇔ab+bc+ca≤0

  • See question detail

    8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3

    ⇔8(a3+b3+c3)≥2(a3+b3+c3)+3ab(a+b)+3bc(b+c)+3ca(c+a)

    ⇔

    6(a3+b3+c3)≥3[ab(a+b)+bc(b+c)+ca(c+a)]

    ⇔

     2a3+2b3+2c3≥ab(a+b)+bc(b+c)+ca(c+a)

    We have: a3 + b3 ≥

     a2b + ab2

    Prove that the same way as the way of Kaya Renger to prove that: a4+b4≥a3b+ab3

    So ⎧⎩⎨⎪⎪a3+b3≥ab(a+b)b3+c3≥bc(b+c)c3+a3≥ca(c+a)

    So true. 

    => 8(a3+b3+c3)≥(a+b)3+(b+c)3+(c+a)3

  • See question detail

    Applying Cauchy's inequality , we have 

    (a4+1)+(b4+1)≥2a2+2b2=2(a2+b2)≥2.2ab=4ab

    Equation occur <=> a = b = ±1

  • See question detail

    Apply inequality Cauchy, we have:

    a+b≥2ab−−√

    ⇒{a4+b4≥2a4b4−−−−√c4+d4≥2c4d4−−−−√

    ⇔a4+b4+c4+d4≥2a2b2+2c2d2=2[(ab)2+(cd)2]

    But (ab)2+(cd)2≥2(ab)2⋅(cd)2−−−−−−−−−√=2abcd

    ⇔a4+b4+c4+d4≥2⋅2abcd=4abcd

  • See question detail

    e have :

    =x+289+1+x+586+1>x+883+1+x+1180+1

    =x+9189+x+9186>x+9183+x+9180

    =x+9189+x+9186−x+9183−x+9180>0

    =(x+91)(189+186−183−180)>0

    To 189+186−183−180

    different 0


    =x+91>0

    =x<−91

  • See question detail

    We have :

    x+149+1+x+347+1=x+545+1+x+743+1

    x+5049+x+5047=x+5045+x+5043

    x+5049+x+5047−x+5045−x+5043=0

    (x+50)(149+147−145−143)=0

    To 149+147−145−143

    different 0

    x+50=0

    x=−50

  • See question detail

    We have:

    1n2+(n+1)2=12n2+2n+1=12⎛⎜ ⎜ ⎜⎝1n2+n+12⎞⎟ ⎟ ⎟⎠<12(1n2+n)=12(1n−1n+1)

    Apply, we have:

    15+113+125+...+1n2+(n+1)2<12(1−12)+12(13−14)+12(14−15)+...+12(1n−1n+1)=12(1−1n+1)<12

  • See question detail

    Let me answer you uncle : DO NOT KNOW

  • See question detail

    a , x2(x−1)+(x−1)=0

    (x−1)(x2+1)=0

    x=1

    b , (x−2)(x2−16)=0

    (x−2)(x−4)(x+4)=0

    x=2,x=4,x=4

  • See question detail

    tan(a)=12⇔a=26,5605118

    ⇒tan(90−2a)=tan(90−2⋅26,56505118)=34

  • See question detail

    a , x8+14x4+1=(x4+1)2+12x4

    Add and subtract 4x2(x4+1)

    we have :

    (x4+1)2+4x2(x4+1)+4x4−4x2(x4+1)+8x4

    =(x4+1+2x2)2−4x2(x4+1−2x2)

    =(x4+2x2+1)2−4x2(x2−1)2

    =(x4+2x2+1)2−(2x3−2x)2

    =(x4+2x3+2x2−2x+1)(x4−2x3+2x2+2x+1)

    b , x8+98x4+1=(x4+1)2+96x4

    =(x4+1)2+16x2(x4+1)+64x4−16x2(x4+1)+32x4

    =(x4+1+8x2)2−16x2(x4+1−2x2)

    =(x4+8x2+1)2−16x2(x2−1)2

    =(x4+8x2+1)2−(4x3−4x)2

    =(x4+4x3+8x2−4x+1)(x4−4x3+8x2+4x+1)

  • See question detail

    We have : 2x−1x−1+1=1x−1

    2x−1x−1+x−1x−1=1x−1

    2x−1+x−1x−1=1x−1

    3x−2x−1−1x−1=0

    3x−2−1x−1=0

    3x−3x−1=0

    3(x−1)x−1=0

    3=0

    So the equation has no solution .

  • See question detail

    We have : x2−5xx−5=5

    x(x−5)x−5=5

    x=5

    So the experiment of the above equation is S={5}

  • See question detail

    We have: 13=1;23=8;...;63=21613=1;23=8;...;63=216

    => # =73=343

  • View more →
Questions ( 4 )
  • solution of the equation :

    \(\dfrac{x-35}{21}+\dfrac{x-36}{20}>\dfrac{x-37}{19}+\dfrac{x-38}{18}\)

  • For : \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\ne0\)

    Compact expression : \(\dfrac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ã+by+cz\right)^2}\)

  • For \(\dfrac{x}{x^2-x+1}=a\) calculated M = \(\dfrac{x^2}{x^4+x^2+1}\) according to the \(a\)

  • phân tích đa thức thành nhân tử :

    \(a^3+b^3+c^3-3abc\)

  • View more →
© HCEM 10.1.29.225
Crafted with by HCEM