-
See question detail
My approach:
\(\left\{{}\begin{matrix}3x^2+6xy-3y^2=6\\2x^2+2xy+2y^2=6\end{matrix}\right.\)
It implies that
\(\left(3x^2+6xy-3y^2\right)-\left(2x^2+2xy+2y^2\right)=6-6=0\)
\(x^2+4xy-5y^2=0\)
\(\left[{}\begin{matrix}x=y\\x=5y\end{matrix}\right.\)
Case 1: x=y, subtitute to (1) we have
\(x^2=1\) \(\Leftrightarrow\) \(x=\pm1\)
Then we get
-
See question detail
We have: \(f\left(2\right)=5.2+1=11\)
\(f\left(-1\right)=5.\left(-1\right)+1=-4\)
then: \(a=f\left(2\right)-f\left(-1\right)=11-\left(-4\right)=15\)
Hence: \(g\left(1\right)=a.1+3=15.1+3=18\)
-
See question detail
\(f\left(a\right)=\sqrt{25a^2-30a+9}\)
\(g\left(a\right)=a\)
We have the following:
\(f\left(a\right)=g\left(a\right)+7\)
\(\Leftrightarrow\sqrt{25a^2-30a+9}=a+7\)
\(\Leftrightarrow\left\{{}\begin{matrix}25a^2-30a+9=\left(a+7\right)^2\\a+7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ge-7\\24a^2-44a-40=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ge-7\\\left[{}\begin{matrix}a=\dfrac{5}{2}\\a=-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{5}{2}\\a=-\dfrac{2}{3}\end{matrix}\right.\)
Finally, there are two values of a.
- View more →