MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 1 )
  • See question detail

    \(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n.\left(n+1\right)}\)

    \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{n}-\dfrac{1}{n-1}\)

    \(A=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}=\dfrac{1999}{2000}\Rightarrow n.2000=\left(n+1\right).1999\)

    \(\Leftrightarrow1999n+n=1999n+1999\Rightarrow n=1999\)

  • View more →
Questions ( 0 )
  • View more →
© HCEM 10.1.29.225
Crafted with by HCEM