-
See question detail
Perimeter squares are:
\(9\times4=36\left(cm^2\right)\)
Answer: \(36\left(cm^2\right)\)
-
See question detail
\(78129\) \(and\) \(7\)
-
See question detail
\(\widehat{xOy}=50^o;\widehat{xOz}=100^o;\widehat{xOt}=130^o\)
-
See question detail
Solution:
\(\widehat{BOI}=\dfrac{1}{4}=\widehat{AOB}=\dfrac{1}{4}\times60^o=15^o.\)
Because OI rays are between 2 OA rays, the OB should \(\widehat{AOI}+\widehat{BOI}=\widehat{AOB}\)
Inferred \(\widehat{AOI}+15^o=60^o\) or \(\widehat{AOI}=45^o\)To
-
See question detail
Two corners \(xOy\) and \(yOy'\) compensated \(\widehat{xOy}+\widehat{yOy'}=180^o\).
Imagine: \(\widehat{yOy'}=180^o-\widehat{xOy}=180^o-120^o=60^o\).
So \(\widehat{yOy'}=60^o\)
-
See question detail
The area of the shaded region is:
\(48\times24=1152\left(m^2\right)\)
Answer: \(1152m^2\)
mk ko nhanh như bn khác nhưng hãy k mk! *_<
-
See question detail
Change 2m4dm = 24 dm
Fold the cloth into 4 equal parts and cut out a portion
-
See question detail
yes., you can make friend with me :vv
I'm also an A.R.M.Y .<3<3 bts
-
See question detail
a, \(A=\left\{x\in N;x=7.q +3;q\in N;x\le150\right\}\) Inferred
\(A=\left\{3;10;17;24;.........;143;150\right\}\)
b, easy to see numbers \(3;10;17;24;....;143;150\)is the sequence of numbers plus \(u_1=3;d=7.\)
The term number of the sequence \(\left(1\right)\)was:
\(n=\dfrac{u_n-u_1}{d}+1=\dfrac{150-3}{7}+1=22\) (term)
Sum the numbers of the sequence \(\left(1\right)\)was:
\(S_n=\dfrac{\left(u_n+u_1\right)\times n}{2}=\dfrac{\left(3+150\right)\times22}{2}=1683.\)
-
See question detail
ko viết bằng T.A à??????
-
See question detail
we put \(\left(a,b\right)=d\) inferred \(a=dm;b=d.n\) so in that \(\left(m,n\right)=1.\)
suppose \(a\le b\) then \(m\le n.\)
we have: \(ab=dm.dn=d^2m.n.\)
\(\left[a,b\right]=\dfrac{ab}{\left(a;b\right)}=\dfrac{d^2m.n}{d}=d.m.n\)
According to the post: \(\left[a,b\right]=210\) so \(d.m.n=210.\)
In that, \(d=\dfrac{ab}{\left[a,b\right]}=\dfrac{2940}{210}=14\) . So \(mn=\dfrac{210}{10}=15\)
We have following list:
\(m\) \(n\) \(a\) \(b\) \(1\) \(15\) \(14\) \(210\) \(3\) \(5\) \(42\) \(70\) -
See question detail
\(a,\) \(37^5\div37^3=37^{5-3}=37^2=1369\)
\(b,\) \(\left(x+3\right)^7\div\left(x+3\right)^5=\left(x+3\right)^{7-5}=\left(x+3\right)^2\)
\(c,\) \(a^{10}\div a^{10}=a^{10-10}=a^0=1\)
-
See question detail
a,\(we\) \(have:\)\(516=516^n\div516^{13}=516^{n-13}\)
\(but\)\(516=516^1.\) \(So\) \(that:\) \(516^1=516^{n-13}.\) \(Inferred\): \(n-13=1.\)
\(so :n=14\)
b,\(3427^2=3427^6\div3427^n=3427^{6-n}.\) \(So\) \(that\)\(6-n=2\) \(or\) \(n=6-2.\) \(so : n=4\)
c,\(we\) \(know:\) \(64=8^2\) \(and\) \(8=8^1\) \(so\) \(8^2=64=8^n\div8^1=8^{n-1}.\)
\(so\) \(that:\) \(n-1=2.\) \(So\) \(n=3\)
-
See question detail
you ask that quesion again?
-
See question detail
I just guess is that pictute has 13 polygon
-
See question detail
a,\(219-7\left(x+1\right)=100\)
\(Inferred: 7\left(x+1\right)=219-100 or7\left(x+1\right)=119. \)
\(So:x+1=119\div7=17.So:x=6\)
b,\(\left(3x-6\right)\times3=3^4\)
\(Inferred : 3x-6=3^4\times3,or:3x-6=27.\)
\(So:3x=27+6\) \(or\) \(3x=33.\)
\(so\) \(end\) \(x=11\)
-
See question detail
\(a,5^3\times5^7=5^{3+7}=5^{10}\)
\(102^{11}\times102^5=102^{11+5}=102^{16}\)
\(19^3\times19^7\times19^5=19^{3+7+5}=19^{15}\)
\(b,x^m\times x^n\times x^p\times x^q=x^{m+n}\times x^p\times x^q=x^{m+n+p}\times x^q=x^{m+n+p+q}\)
-
See question detail
Z ={.....-3,-2.-1,0,1,2,3...}
-
See question detail
a, \(\left[\left(-13\right)+\left(-15\right)\right]+\left(-8\right)\)
\(=\left(-28\right)+\left(-8\right)\)
\(=-36\)
b, \(-\left(-129\right)+\left(-119\right)-301+12\)
\(=129-119-301+12\)
\(=10-301+12\)
\(=\left(-291\right)+12\)
\(=-279\)
c, \(500-\left(-200\right)-210-100\)
\(=300-\left(210+100\right)\)
\(=300-310\)
\(=-10\)
d, \(777-\left(-111\right)-\left(-222\right)+20\)
\(=777+111+222+20\)
\(=888+242\)
\(=1130\)
-
See question detail
\(64cm^2\)
- View more →