Answers ( 2 )
-
See question detail
(*) 1+N=.....=x2/(x-2)2+4
We have x2 \(\ge\) 0 , (x-2)2+4 \(\ge\) 4 > 0
So 1+N \(\ge\) 0 => N \(\ge\) -1 ;equality : x=0
(*)1-N=....=(x-4)2/(x-2)2+4
....... -> N \(\le\) 1 , equality : x=4
-
See question detail
Using cauchy-schwarz inequality , we have:
A(12+12)=(4x2+y2)(12+12)=[(2x)2+y2].(12+12) \(\ge\) (2x.1+y.1)2 = 62=36
=> A \(\ge\) 36/2=18
minA=18, equality : x=1,5;y=3
- View more →