MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 5 )
  • See question detail


     

    We have 237=3+27=3+172=3+13+12=3+13+11+1237=3+27=3+172=3+13+12=3+13+11+1

    So (a;b;c)=(3;3;1).

  • See question detail

    x3−4y=15x3−4y=15(1)

    ⇔xy−123y=15⇔xy−123y=15

    ⇔5xy−60=3y⇔5xy−60=3y

    ⇔5xy−3y=60⇔5xy−3y=60

    ⇔y⋅(5x−3)=60⇔y⋅(5x−3)=60

    ⇒y=605x−3⇒y=605x−3(2).

    (1),(2) => x3−4605x−3=15⇔x3−20x−1260=15⇔x3−4⋅(5x−3)60=15⇔x3−5x−315=15⇔5x15−5x−315=15⇔315=15x3−4605x−3=15⇔x3−20x−1260=15⇔x3−4⋅(5x−3)60=15⇔x3−5x−315=15⇔5x15−5x−315=15⇔315=15 . 

    From here we know that x has lots of value but just (x;y) = (1;30),(3;5) satisfy thread.


     

  • See question detail

    ⇒5x=16+y3⇒5x=16+y3

    ⇒5x=16+2y6⇒5x=16+2y6

    ⇒5x=2y+16⇒5x=2y+16

    ⇒x(2y+1)=30⇒x(2y+1)=30

    But 2y + 1 is a odd => x is a even number

    => x∈{−30;−10;−6;−2;2;6;10;30}x∈{−30;−10;−6;−2;2;6;10;30}

    We have:

    x -30 -10 -6 -2 2 6 10 30
    2y+1 -1 -3 -5 -15 15 5 3 1
    y -1 -2 -3 -8 7 2 1 0

    So (x,y)=(−30;−1);(−10;−2);(−6;−3);(−2;−8);(2;7);(6;2);(10;1);(30;0)

  • See question detail

    ⇒x6−130=2y⇒x6−130=2y

    ⇒5x30−130=2y⇒5x30−130=2y

    ⇒5x−130=2y⇒5x−130=2y

    ⇒y(5x−1)=60⇒y(5x−1)=60

    But 5x−1≡4(mod5)5x−1≡4(mod5)

    ⇒5x−1∈{−6;−1;4}⇒5x−1∈{−6;−1;4}

    If 5x - 1 = -6

    => 5x = -5 => x = -1

    And y = 60 : -6 = -10

    If 5x-1 = -1 

    => 5x = 0 => x = 0

    And y = 60 : -1 = -60

    If 5x-1 = 4 

    => 5x = 5 => x = 1

    And y = 60 : 4 = 15

    So (x,y)=(−1;−10);(0;−60);(1;15

  • See question detail

    C=10101⋅(5111111+5222222−43⋅7⋅11⋅13⋅17)C=10101⋅(5111111+5222222−43⋅7⋅11⋅13⋅17)

    ⇔C=511+522−148187⇔C=511+522−148187

    ⇒C=−41374⇒C=−41374

     
     

  • View more →
Questions ( 4 )
  • undefined

  • Tìm hai số có hai chữ số, biết rằng số lớn chia số bé được 3 dư 3 và khi viết số bé theo thứ tự ngược lại thì được tổng của hai số cần tìm.

  • undefined

  • View more →
© HCEM 10.1.29.240
Crafted with by HCEM