MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 16 )
  • Evaluate (3+1)(32+1)(34+1)(38+1)(316+1)(332+1).

  • Evaluate \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{1999^2}\right)\left(1-\dfrac{1}{2000^2}\right)\)

    [Hint: a2 - b2 = (a-b)(a+b)]

  • Find the last 4 digits in the addition of

    1 + 11 + 111 + 1111 + 11111 + 111111 + ...+ 111...111(1004 1s).

  • Evaluate \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+..+\dfrac{1}{1+2+3+...+50}\)

  • Evaluate 

    \(\left[1\times\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\times...\times\left(1-\dfrac{1}{2000}\right)\right]\times2000\)

  • Evaluate \(\left(1+\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}\right)\times\left(\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}+\dfrac{1}{67}\right)\times\left(1+\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}+\dfrac{1}{67}\right)\times\left(\dfrac{1}{53}+\dfrac{1}{59}+\dfrac{1}{61}\right)\)

  • Evaluate \(\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\left(\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+...+\left(\dfrac{1}{100}+\dfrac{2}{100}+\dfrac{3}{100}+...+\dfrac{99}{100}\right)\)

  • What is the of n in \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{1999}{2000}?\)

  • Evaluate 1+2+22+23+24+...+22000.

  • Evaluate 2000 x \(\left(1+\dfrac{1}{2}\right)\)x\(\left(1+\dfrac{1}{3}\right)\)x\(\left(1+\dfrac{1}{4}\right)\)x...x\(\left(1+\dfrac{1}{2000}\right)\)

  • The value of (100 + 99 + 98 - 97 - 96 + 95 + 94 + 93 - 92 - 91 + .. + 10 + 9 + 8 - 7 - 6 + 5 +4 + 3 - 2 - 1 ) is

  • Evaluate \(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{67\times70}\)

  • It given \(A=\dfrac{3000\times3003}{3001\times3002}\),\(B=\dfrac{3000\times3002}{3001\times3003}\)and \(C=\dfrac{3000\times3001}{3002\times3003}\), then

    (A) C < B < A

    (B) A < C < B

    (C) C < A < B

    (D) A < B < C

    (E) B < A < C

  • If m + |m| + n = 8 and  |n| + m-n = 9, find m-n.

  • Find the smallest value of |a-1000| + |a-1001|.

  • Simplify |a+1| + |a-1| for -1 <= a <=0.

© HCEM 10.1.29.240
Crafted with by HCEM