MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Questions ( 6 )
  • Prove that:

    B = \(\dfrac{1}{2!}+\dfrac{5}{3!}+\dfrac{11}{4!}+...+\dfrac{n^2+n-1}{\left(n+1\right)!}< 2\).

    Help me please! This is my homework and I must give it to my teacher tomorrow!

  • Prove that: 

     \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}< 1\)(n \(\in\)N*)

  • Prove that \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\left(n\in N;n\ge2\right)\)

    Help me please!

  • Prove that E = \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\).

  • Given natural numbers, a and b, that sastify the expression: (a + 2016b) \(⋮\) 2017. Prove that:

    A = (2a + 2015b)(3a + 2014b)...(2015a + 2b) \(⋮\) 20172014.

    Help me please!

© HCEM 10.1.29.225
Crafted with by HCEM