Given a, b, c and d are positive integers
If (a - b - d)(a - c - d)(a + c - d)(a + b + c - d) = 210, find a, b, c and d
If a, b, c and d statisfy a system of equations
\(\left\{{}\begin{matrix}3a+2b+c+d=-7\\a+3b+2c+d=12\\a+b+3c+2d=62\\2a+b+c+3d=45\end{matrix}\right.\)
find the value of 10c + 5d
It is given \(\left\{{}\begin{matrix}2r-4s+2t=0\\r-3r+4t=0\end{matrix}\right.\) Find r:s:t
If \(\left\{{}\begin{matrix}a+2b+3c+4d=8\\a-2b+4c+3d=5\end{matrix}\right.\), find the value of a + 10b + c + 6d
If \(\left\{{}\begin{matrix}3a+7b+c=103\\4a+10b+c=143\end{matrix}\right.\), what is a + b + c ?
If \(\left\{{}\begin{matrix}3x+2y=12\\3x-y=3\end{matrix}\right.\), find the value of a in 4x - 8y + 2a = 0
Find the value of 5 . (2x + y) +2 . (3y - 3x) + x + y, if x and y satisfy the equations:
\(\left\{{}\begin{matrix}2x+3y=5\\y-3x=9\end{matrix}\right.\)
The solution for \(\left\{{}\begin{matrix}x+ay=11\\x-y=2\end{matrix}\right.\)are positive integers . Find the value of a.
Solve for the values of x and y in the equations:
\(\left\{{}\begin{matrix}3x+4y=5\\4x-2y=14\end{matrix}\right.\)
If \(\left\{{}\begin{matrix}2x+3y=11\\ax-by=11\end{matrix}\right.\)and \(\left\{{}\begin{matrix}ax+by=-7\\3x-5y=-12\end{matrix}\right.\)have the same solution, then the values of a and b are
The solution (x,y) to \(\left\{{}\begin{matrix}3x+y=9\\5x-4y=32\end{matrix}\right.\)is
x and y are integers that satisfy the equations:
\(\left\{{}\begin{matrix}2x-ay=12\\4x+y=2\end{matrix}\right.\)
If a is a possible integer, its value is
How many sets of solution are there in 7x + 4y = 100?
If integers x and y satisfy 2008x = 16y, the smallest possible value of x + y is
Find the value of xyz if x,y and z satisfy the equations:
\(\left\{{}\begin{matrix}3x-2y=5\\2y+3x=1\\x-z=4\end{matrix}\right.\)
Given x = 5 and y = 4 is the solution to the euqations:
\(\left\{{}\begin{matrix}kx-my=7\\mx+ky=22\end{matrix}\right.\)
what is the value of k? What id the value of m?