Give \(a;b;c\ge-1\) và \(a^2+b^2+c^2=9\).
Find Min \(M=a^3+b^3+c^3\)
Give: a;b;c>0 and \(a^2+b^2+c^2=1\). Prove that:
\(\dfrac{1}{3-ab}+\dfrac{1}{3-bc}+\dfrac{1}{3-ca}\le\dfrac{3}{2}\)
\(\Delta ABC\) \(has\)\(AB\perp AC\)\(and\)\(AB< AC;BC^2=4.AB.AC\). Find the value of \(\widehat{B}\)and\(\widehat{C}\)
1+2+3+...+10=?
Give: \(a+b+c=4\).Prove:
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)
\(C=\dfrac{3\left|x\right|+2}{4\left|x\right|-5}\) \(\left(x\in Z\right)\)
a)Find Max,Min C
b) Find x when \(C\in N\)
Solve the equation:
\(x.\dfrac{8-x}{x-1}\left(x-\dfrac{8-x}{x-1}\right)=15\)
Prove: \(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ca+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(\left(a;b;c>0\right)\)