-
See question detail
Convert a/b=a/d to a/b=c/d
We have :
a/b=c/d⇔2a/2b=3c/3d
Apply the same sequence properties , we got :
2a/2b=3c/3d=2a−3c/2b−3d=2a+3c/2b+3d
⇒2a−3c/2b−3d = 2a + 3c/2b + 3d
-
See question detail
There are 99 digits could be the ones digits: 0,1,2,3,4,5,6,7,8,9.
If the ones digit is 00 then there are: 9−0=9(numbers) satisfy the question.
If the ones digit is 11 then there are: 9−1=8(numbers) satisfy the question.
....
If the ones digit is 99 then there are: 9−9=0(numbers) satisfy the question.
So there are total: 9+8+7+6+5+4+3+2+1+0=45(numbers) satisfy the question
-
See question detail
Point B has the numbers of students it receives :
40 * 25% = 40 * 1/4 = 10 ( students )
So the result of this problem is 10 students.
-
See question detail
1.2+2.4+3.6 / 2.4 + 4.8 + 6.12
=1.2 + 2.4 + 3.6 / 4 * 1.2 + 2.4 * 4 + 2*3.2.6
=1.2 + 2.4 + 3.6 / 4 * ( 1.2 + 2.4 + 3.6 )
=1 / 4.
-
See question detail
11+22+33+44+...+999
=11(1+2+...+111)
=11+111+1/2x111/2
=34188
-
See question detail
a) The term number of the sum s is
( 101 - 1 ) : 3 + 1 = 34 (number)
b) number 50 is
( 50 - 1 ) . 3 + 1 = 148
c) total S is
( 1 + 100 ) . 34 : 2 = 1717
answer: a) 34 number
b) 148
c) 1717
-
See question detail
There are three squares can be draw.
-
See question detail
We have: 1cm=10mm1cm=10mm
=> 20cm=200mm20cm=200mm
So the answer is 200mm200mm (200 millimeter).
-
See question detail
There is total: (100−1)+1=100(numbers)(100−1)+1=100(numbers)
The sum of all numbers is: (1+100).100:2=5050(1+100).100:2=5050
The average of all numbers is: 5050:100=50,55050:100=50,5
So the answer is: 50,5
-
See question detail
The least possible number is: 10001000
The biggest possible number is: 99989998
There are: (9998−1000):2+1=4500(numbers)(9998−1000):2+1=4500(numbers)
So there are 45004500 4-digit-even numbers.
Thanks !
-
See question detail
The sum of 5 numbers will be:
18 x 5=90
The sum of 5 numbers increases more than the old amount by:
1+2+3+4+5=15
Total of 5 numbers increased;
90+15=105
Average of 5 numbers increased:
105:5=21
=>The correct answer is 21.
-
See question detail
mình s đầu tiên
-
See question detail
Arrcoding to the question, we have the ratio of the salt and fresh water in Protaras is 7:193
=> The ratio of the salt and the sea water = 7:(193+7) = 7:200
First, we exchange: 1000hg=100kg1000hg=100kg (sea water).
Because the ratio of the salt and sea water is 7:200
=> 7kg7kg salt are in 200kg200kg sea water.
200kg200kg sea water are more than 100kg100kg sea water: 200:100=2(times)200:100=2(times)
In 100kg100kg sea water there is: 7:2=3,5(kg)7:2=3,5(kg) salt.
(This question has no answer because there is no 3,5 kg salt.
If there is an answer, you must change 1000hg1000hg sea water -> 1000kg1000kg sea water or change the questions into: How many hectograms of salt are there in 1000hg of sea water)
-
See question detail
We have: x.y=14x.y=14 and y.z=10y.z=10 and z.x=35z.x=35
<=>x.y.y.z.z.x=14.10.35x.y.y.z.z.x=14.10.35
<=>x2.y2.z2=4900x2.y2.z2=4900
<=>(x.y.z)2=702(x.y.z)2=702
=> x.y.z=70x.y.z=70 <1>
From the context and <1>
=> x=(x.y.z):(y.z)=70:10=7x=(x.y.z):(y.z)=70:10=7
=> y=(x.y):x=14:7=2y=(x.y):x=14:7=2
=> z=(z.x):x=35:7=5z=(z.x):x=35:7=5
So x=7;y=2;z=5
=>The value of x+y+z is 7+2+5=14
So the answer of the problem is C.14 .
-
See question detail
a,Ta tách số trên thành các số từ 1 đến 53.
Từ 1 đến 9 có 9 số có 9 chữ số ,vậy cần phải có 41 chữ số nữa.
41:2=20(dư 1)
Ta đi tìm số thứ 20 của dãy số có 2 chữ số.
Gọi chữ số thứ 20 của dãy số có 2 chữ số là a, ta có:
(a-10):1+1=20
(a-10):1=19
a-10=19
a=19+10
a=29
Vậy số thứ 20 của dãy số có 2 chữ số là:29
Mà chữ số tiếp theo của số 9 là số 3 vậy nên chữ số thứ 50 của số A là chữ số 3 của số 30.
b,Từ 1 đến 9 có 1 chữ số 2.
Từ 10 đến 19 có 1 chữ số 2.
Từ 20 đến 29 có 11 chữ số 2.
Từ 30 đến 39 có 1 chữ số 2.
Từ 40 đến 49 có 1 chữ số 2.
50 53 có 1 chữ số 2.
Vậy số A có 1+1+11+1+1+1=17(chữ số 2).
c,Bạn tự tính đi.
Sorry because I not good answering the question in English.Thanks!
-
See question detail
20+20=40
mình rồi
-
See question detail
100*5=500
-
See question detail
I don't understand meaning of the post
-
See question detail
The triangular ABC has AB = AC,so it isosceles at A ⇒ˆC1=ˆABC=750⇒C1^=ABC^=750
The quadrilateral ABCD has :
ˆABC+ˆBCD+ˆADC+ˆBAD=3600ABC^+BCD^+ADC^+BAD^=3600
⇒ˆBCD=3600−800−750−650=1400⇒BCD^=3600−800−750−650=1400
⇒ˆC2=ˆBCD−ˆC1=1400−750=650⇒C2^=BCD^−C1^=1400−750=650
The triangular ACD has ˆC2=ˆADC=650C2^=ADC^=650,so the triangular ACD isosceles at A
⇒AC=AD but AB=AC⇒AB=ADAB=AC⇒AB=AD
⇒The triangular ABD isosceles at A ⇒ˆD1=1800−ˆBAD2=10002=500⇒D1^=1800−BAD^2=10002=500
⇒ˆD2=ˆBDC−ˆD1=650−500=150⇒D2^=BDC^−D1^=650−500=150
So the answer is B
-
See question detail
2014 2016 = (2014 2) 1008
= (...6)1008 = ....6