MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 12 )
  • See question detail

    123476543 = 11111 x 11113

  • See question detail

    Gọi biểu thức đó là A. Ta có:
    A=\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{67.70}\)
    3A = \(3.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{67.70}\right)\)
    3A = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{67.70}\)
    3A = \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{67}-\dfrac{1}{70}\)
    3A = \(1-\dfrac{1}{70}\)
    3A = \(\dfrac{69}{70}\)
    => A = \(\dfrac{69}{70}:3\)
    A = \(\dfrac{69}{70}.\dfrac{1}{3}\)
    A = \(\dfrac{23}{70}\)

  • See question detail

    We have :

    \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{1999}{2000}\)
    = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    =  \(1-\dfrac{1}{n+1}=\dfrac{1999}{2000}\)
    = > \(\dfrac{1}{n+1}=1-\dfrac{1999}{2000}\)
    <=> \(\dfrac{1}{n+1}=\dfrac{1}{2000}\)
    => n + 1 = 2000
    n = 2000 - 1
    n = 1999
    Vậy n = 1999.

  • See question detail

    3x - 2y = 5
    2y + 3z = 1
    x - z = 4
    We have :
    ( 3x - 2y ) - ( 2y + 3z ) = 5 - 1
    3x - 2y - 2y - 3z = 4
    3x - 4y  - 3z = 4
    3x - 3z - 4y = 4
    3. ( x - z ) - 4y = 4
    3 . 4 - 4y  = 4   ( replace x - z = 4 )
    12 - 4y  = 4
           4y   = 12 - 4
          4y     = 8
            y     = 8 : 4
           y      =  2
    => 3x - 2.2 = 5    ( replace y = 2 )
          3x - 4 = 5
          3x       = 5 + 4
          3x       = 9
            x       = 9 : 3
            x       = 3
    => 3 - z = 4  ( replace x = 3 )
               z  = 3 - 4
                z = -1
        So y = 2, x = 3 and z = -1

  • See question detail

    \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
    \(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
    \(A=1-\dfrac{1}{100}\)
    \(A=\dfrac{99}{100}\)

  • See question detail

    Hello. My name is Nguyet Nguyet. I am thirteen years old and i study at Vo Thi Sau secondary school.

  • See question detail

    3x - 2y = 5
    2y + 3z = 1
    x - z = 4
    We have :
    ( 3x - 2y ) - ( 2y + 3z ) = 5 - 1
    3x - 2y - 2y - 3z = 4
    3x - 4y  - 3z = 4
    3x - 3z - 4y = 4
    3. ( x - z ) - 4y = 4
    3 . 4 - 4y  = 4   ( replace x - z = 4 )
    12 - 4y  = 4
           4y   = 12 - 4
          4y     = 8
            y     = 8 : 4
           y      =  2
    => 3x - 2.2 = 5    ( replace y = 2 )
          3x - 4 = 5
          3x       = 5 + 4
          3x       = 9
            x       = 9 : 3
            x       = 3
    => 3 - z = 4  ( replace x = 3 )
               z  = 3 - 4
                z = -1
        So y = 2, x = 3 and z = -1

  • See question detail

    a)  ( 2x + 3 )2 
    = ( 2x + 3 ) . ( 2x + 3 )
    = 2x2 + 6x  + 6x + 9
    = 2x2 + 12x + 9
    = x( 2x + 12 ) + 9

  • See question detail

    I consider red marble is 3x + 1, yellow marble is 3x + 2, green marble is 3x ( With x \(\in\) N )
    Because 2017 = 3x + 1 should :
    Color of the 2017th is red marble.

  • See question detail

    We have :

    A = \(\dfrac{1}{2016}+\dfrac{3}{2016}+\dfrac{5}{2016}+...+\dfrac{2015}{2016}\)
    A = \(\dfrac{1+3+5+...+2015}{2016}\)
    A = \(\dfrac{1016064}{2016}=504\)
    => Sentence c.

© HCEM 10.1.29.225
Crafted with by HCEM