MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 13 )
  • See question detail

    Why do you say maintenance page ? 

  • See question detail

    hiu We have : \(\sqrt{xy\left(x-y\right)}=x+y\Leftrightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

    \(xy\left(x-y\right)^2=\dfrac{1}{4}.4xy\left[\left(x+y\right)^2-4xy\right]\le\dfrac{\left(x+y\right)^4}{16}\)

    so \(\left(x+y\right)^4\ge16\left(x+y\right)^2\)  \(\Leftrightarrow p^4-16p^2\ge0\Leftrightarrow p\ge4\)

    Equal sign occurs \(\Leftrightarrow x=2+\sqrt{2};b=2-\sqrt{2}\)

  • See question detail

    MathYou not Englishyou 

  • See question detail

    We have : \(x^2-180x+8102=\left(x^2-180x+8100\right)+2=\left(x-90\right)^2+2\ge2\forall x\left(1\right)\)

    Applying the Bunhiacopxki inequality , we have : 

    \(\left(\sqrt{x-89}+\sqrt{91-x}\right)^2\le\left(1+1\right)\left(x-89+91-x\right)\)

    \(\Rightarrow\left(\sqrt{x-89}+\sqrt{91-x}\right)^2\le2.2=4\)

    \(\Rightarrow\sqrt{x-89}+\sqrt{91-x}\le2\left(2\right)\)

    Because \(\sqrt{x-89}+\sqrt{91-x}=x^2-180x+8102\)

    So ( 1 ) ; ( 2 ) ; we have : \(\sqrt{x-89}+\sqrt{91-x}=x^2-180x+8102=2\)

    Equal sign occurs \(\Leftrightarrow\sqrt{x-89}=\sqrt{91-x};x-90=0\left(3\right)\)

    We have : \(\sqrt{x-89}=\sqrt{91-x}\)  \(\Leftrightarrow x-89=91-x\Leftrightarrow x=90\left(4\right)\)

     ( 3 ) ; ( 4 ) \(\Rightarrow x=90\) is the result of the equation

  • See question detail

    Tran Anh ??? Le Quoc Tran Anh ??? 

  • See question detail

    Put \(A=\dfrac{ab}{a+b-c}+\dfrac{bc}{b+c-a}+\dfrac{ac}{c+a-b}\)

    Because a ; b ; c are the length of a triangle so \(a+b-c;b+c-a;c+a-b>0\)

    Put \(a+b-c=x;b+c-a=y;c+a-b=z\)

    \(\Rightarrow\dfrac{x+y}{2}=b;\dfrac{y+z}{2}=c;\dfrac{x+z}{2}=a;a+b+c=x+y+z\) 

    We have : \(\dfrac{\left(x+y\right)\left(x+z\right)}{2.2x}+\dfrac{\left(x+y\right)\left(y+z\right)}{2.2y}+\dfrac{\left(x+z\right)\left(y+z\right)}{2.2z}\)

    \(=\dfrac{x\left(x+y+z\right)+yz}{4x}+\dfrac{y\left(x+y+z\right)+xz}{4y}+\dfrac{z\left(x+y+z\right)+xy}{4z}\)

    \(=\dfrac{x+y+z}{4}+\dfrac{x+y+z}{4}+\dfrac{x+y+z}{4}+\dfrac{yz}{4x}+\dfrac{xz}{4y}+\dfrac{xy}{4z}\)

    \(=\dfrac{3\left(x+y+z\right)}{4}+\dfrac{y^2z^2}{4xyz}+\dfrac{x^2z^2}{4xyz}+\dfrac{x^2y^2}{4xyz}\)

    Applying the inequality \(a^2+b^2+c^2\ge ab+bc+ac\) , we have :

    \(A\ge\dfrac{3\left(x+y+z\right)}{4}+\dfrac{xyz\left(x+y+z\right)}{4xyz}=x+y+z=a+b+c\)

    Equal sign occurs \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c\)

     
  • See question detail

    I don't know why 

    \(\dfrac{5}{x}+\dfrac{5}{y}\ge5.\dfrac{4}{x+y}\ge5.\dfrac{4}{10}\)

    Because I think \(\dfrac{4}{x+y}\le\dfrac{4}{10}=\dfrac{2}{5}\)

  • See question detail

    Conandtb spam 

  • See question detail

    You can ask your teacher 

  • See question detail

    ??? Hack ??? 

  • See question detail

    My answer is :

     \(200cm^2\)

    :D

  • See question detail

    2067 mm + 478 cm - 0,1356 m 

    = 2,067 m + 4,78 m - 0 , 1356 m 

    = 6 , 7114 m 

    = 0 , 0067114 km 

  • See question detail

    My answer is : D  3 , 3535

© HCEM 10.1.29.240
Crafted with by HCEM