MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 15 )
  • See question detail

    a) We see: xAz = AOC = 65o They are in the same position as Az//Oy

    b) Because Ax//Oy should be AOC + OAz = 180o (two cornerson the same side)

    => OAz = 115o = CBz

    They are in the same position => Ox // Bt

    c) Because KBC and CBz two adjacent angles KBC = 180o - 115o 

    => OCB = 90o - 65o 

    => OCB = 25o

    d) We see: HAK = AHO = 90o

    => HAK + AKC = 180o. They are in the same position => AH // CK

    P/s: Next time you write in Vietnamese, you go to olm or hoc24

  • See question detail

    Sorry, edit the section \(\sqrt[8]{25+6}\) in \(\sqrt[8]{256}\) 

  • See question detail

    \(\sqrt{\sqrt{\sqrt{256}}}=\left(\sqrt{256}\right)^{\dfrac{1}{2}.\dfrac{1}{2}}=\left(256\right)^{\dfrac{1}{4}}=\sqrt[4]{\sqrt[]{256}}=\left(256^{\dfrac{1}{2}}\right)^{\dfrac{1}{4}}=256^{\dfrac{1}{2}.\dfrac{1}{4}}=256^{\dfrac{1}{8}}=\sqrt[8]{25+6}\)

    \(=2\Rightarrow\sqrt{\sqrt{\sqrt{256}}=2}\)

  • See question detail

    Quoc Tran Anh Le You can not rely on the number of reviews to accuse me of how many nick

  • See question detail

    Quoc Tran Anh Le  I did not do anything wrong that I have to fear =)) You just reported it :))) Thanks in advance

  • See question detail

    A very perfect lawsuit :) Acclaim

  • See question detail

    Do you have evidence against me?

  • See question detail

    You use the word carefully :)

  • See question detail

    \(\left(x-1\right)\left(2x-1\right)=9-x\)

    \(\Leftrightarrow2x^3-3x+1=9-x\)

    \(\Leftrightarrow2x^2-3x+1=9-x+x\)

    \(\Leftrightarrow2x^2+2x+1=9\)

    \(\Leftrightarrow2x^2-2x+1-9=9-9\)

    \(\Leftrightarrow2x^2-2x-8=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4.2\left(-8\right)}}{2.2}\\x=\dfrac{-\left(2\right)+\sqrt{\left(-2\right)^2-4.\left(-8\right)}}{2.2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{2}\\\dfrac{1-\sqrt{17}}{2}\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{2}\\x=\dfrac{1-\sqrt{17}}{2}\end{matrix}\right.\)

  • See question detail

    \(D=\left(-2x^3-xy^2\right)+\left(xy^2-1\right)-\left(x^2y-xy^2+3x^2\right)\)

    \(D=-2x^3-xy^2+x^2-1-\left(x^2y-xy^2+3x^2\right)\)

    \(D=-2x^3-xy^2+xy^2-1-x^2y+xy^2-3x^2\)

    \(D=-2x^3-x^2y-3x^2+xy^2-1\)

  • See question detail

    Answer: Year 2099

  • See question detail

    Different way:

    \(\dfrac{x-91}{37}+\dfrac{x-86}{42}+\dfrac{x-78}{50}+\dfrac{x-49}{79}=4\)

    \(=\dfrac{82950}{\left(x-91\right)}+\dfrac{73075}{\left(x-86\right)}+\dfrac{61383}{\left(x-78\right)}+\dfrac{38850}{\left(x-49\right)}=12276600\)

    \(=256258x-20524424=1276600\)

    \(=256258x=32801024\)

    => x = 128

    So: x = 128

  • See question detail

    \(x^2-3x+2=0\)

    I consider two cases

    Case 1: \(\dfrac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)

    \(=\dfrac{3+\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)

    \(=\dfrac{4}{2.1}\)

    = 2

    Case 2: \(\dfrac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)

    \(=\dfrac{3-\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)

    \(=\dfrac{2}{2.1}\)

    = 1

    => x = {2; 1}

    So: x = {2; 1}

© HCEM 10.1.29.225
Crafted with by HCEM