-
See question detail
Set \(A=a^3+b^3+c^3\); \(B=a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\)
Apply AM-GM inequality for 2 positive numbers
\(a^3+abc\ge2\sqrt{a^3.abc}=2a^2\sqrt{bc}\)
\(b^3+abc\ge2\sqrt{b^3.abc}=2b^2\sqrt{ac}\)
\(c^3+abc\ge2\sqrt{c^3.abc}=2c^2\sqrt{ab}\)
Thence inferred \(A+3abc\ge2B\)
Need proof: \(3abc\le A\) it mean \(3abc\le a^3+b^3+c^3\), this is always true because of the AM-GM inequality we have \(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)
Equal sign occurs when and only if a = b = c
-
See question detail
C = 4x(x + y)(x + y + z)(x + z) + y2z2
= 4[x(x + y + z)][(x + y)(x + z)] + y2z2
= 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
= 4(x2 + xy + xz)2 + 4yz(x2 + xy + xz) + y2z2
= [2(x2 + xy + xz)]2 + 2.2(x2 + xy + xz).yz + (yz)2
= [2(x2 + xy + xz) + yz)]2
We have things to prove
-
See question detail
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= (x2 + 9y2 - 6xy) + (4x - 12y) + x2 - 10x + 2004
= [x2 + (3y)2 - 2x.3y] + 4(x - 3y) + (x2 - 10x) + 2004
= (x - 3y)2 + 2.(x - 3y).2 + 4 + (x2 - 2x.5 + 25) + 2004 - 4 - 25
= (x - 3y + 2)2 + (x - 5)2 + 1975
We have: (x - 3y + 2)2 \(\ge0\forall x;y\); \(\left(x-5\right)^2\ge0\forall x\)
So \(\left(x-3y+2\right)^2+\left(x-5\right)^2\ge0\forall x;y\)
\(\Rightarrow\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\forall x;y\)
or \(B\ge1975\forall x;y\)
Equal sign occurs when and only if \(\left\{{}\begin{matrix}x-3y+2=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2=3y\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{3}\\x=5\end{matrix}\right.\)
-
See question detail
x + y = 3 => (x + y)2 = 9 <=> x2 + y2 + 2xy = 9 <=> 5 + 2xy = 9 (because x2 + y2 = 5)
<=> 2xy = 4 <=> xy = 2
We have: (x + y)(x2 + y2) = 3.5
<=> x3 + x2y + xy2 + y3 = 15
<=> x3 + y3 + xy(x + y) = 15
<=> x3 + y3 + 2.3 = 15 (because xy = 2; x + y = 3)
<=> x3 + y3 + 6 = 15
<=> x3 + y3 = 9
So x3 + y3 = 9
-
See question detail
Applying the Cauchyschwarz inequality to the Engel form we have:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
We have things to prove
-
See question detail
x + y = 1 <=> y = 1 - x
We have: F = x2 + (1 - x)2 + (1 - x).x
= x2 + 1 + x2 - 2x + x - x2
= x2 - x + 1
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Equal signs occur when and only of \(x-\dfrac{1}{2}=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
\(y=1-\dfrac{1}{2}=\dfrac{1}{2}\)
min A \(=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)