MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 6 )
  • See question detail

    Set \(A=a^3+b^3+c^3\); \(B=a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}\)

    Apply AM-GM inequality for 2 positive numbers 

    \(a^3+abc\ge2\sqrt{a^3.abc}=2a^2\sqrt{bc}\)

    \(b^3+abc\ge2\sqrt{b^3.abc}=2b^2\sqrt{ac}\)

    \(c^3+abc\ge2\sqrt{c^3.abc}=2c^2\sqrt{ab}\)

    Thence inferred \(A+3abc\ge2B\)

    Need proof: \(3abc\le A\) it mean \(3abc\le a^3+b^3+c^3\), this is always true because of the AM-GM inequality we have \(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)

    Equal sign occurs when and only if a = b = c

  • See question detail

    C = 4x(x + y)(x + y + z)(x + z) + y2z2

       = 4[x(x + y + z)][(x + y)(x + z)] + y2z2

       = 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2

       = 4(x2 + xy + xz)2 + 4yz(x2 + xy + xz) + y2z2

       = [2(x2 + xy + xz)]2 + 2.2(x2 + xy + xz).yz + (yz)2

       = [2(x2 + xy + xz) + yz)]2

    We have things to prove

  • See question detail

    B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

       = (x2 + 9y2 - 6xy) + (4x - 12y) + x2 - 10x + 2004

       = [x2 + (3y)2 - 2x.3y] + 4(x - 3y) + (x2 - 10x) + 2004

       = (x - 3y)2 + 2.(x - 3y).2 + 4 + (x2 - 2x.5 + 25) + 2004 - 4 - 25

       = (x - 3y + 2)2 + (x - 5)2 + 1975

    We have: (x - 3y + 2)2 \(\ge0\forall x;y\);  \(\left(x-5\right)^2\ge0\forall x\)

    So \(\left(x-3y+2\right)^2+\left(x-5\right)^2\ge0\forall x;y\)

    \(\Rightarrow\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\forall x;y\)

    or \(B\ge1975\forall x;y\)

    Equal sign occurs when and only if \(\left\{{}\begin{matrix}x-3y+2=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+2=3y\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{3}\\x=5\end{matrix}\right.\)

  • See question detail

    x + y = 3 => (x + y)2 = 9 <=> x2 + y2 + 2xy = 9 <=> 5 + 2xy = 9 (because x2 + y2 = 5)

    <=> 2xy = 4 <=> xy = 2

    We have: (x + y)(x2 + y2) = 3.5

    <=> x3 + x2y + xy2 + y3 = 15

    <=> x3 + y3 + xy(x + y) = 15

    <=> x3 + y3 + 2.3 = 15 (because xy = 2; x + y = 3)

    <=> x3 + y3 + 6 = 15

    <=> x3 + y3 = 9

    So x3 + y3 = 9

  • See question detail

    Applying the Cauchyschwarz inequality to the Engel form we have:

    \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

    We have things to prove

  • See question detail

    x + y = 1 <=> y = 1 - x

    We have: F = x2 + (1 - x)2 + (1 - x).x

                       = x2 + 1 + x2 - 2x + x - x2

                       = x2 - x + 1

                       \(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

    Equal signs occur when and only of \(x-\dfrac{1}{2}=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)

    \(y=1-\dfrac{1}{2}=\dfrac{1}{2}\)

    min A \(=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

© HCEM 10.1.29.225
Crafted with by HCEM