MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 4 )
  • See question detail

    We have : \(2018.4=\left(1^2+1^2+1^2+1^2\right)\left(a^4+b^4+c^4+d^4\right)\ge\left(a^2+b^2+c^2+d^2\right)^2\) 

    (Inquality Bunyakovsky)

    \(\Leftrightarrow-\sqrt{2018.4}\le a^2+b^2+c^2+d^2\le\sqrt{2018.4}\)

    \(\Leftrightarrow0\le a^2+b^2+c^2+d^2< 90\)

  • See question detail

    Edit post \(\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)

    Have : 

    \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\Rightarrow\dfrac{1}{x}\ge\left(1-\dfrac{1}{y}\right)+\left(1-\dfrac{1}{z}\right)=\dfrac{y-1}{y}\)

    \(\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\) (Cauchy)

    Similar \(\left\{{}\begin{matrix}\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{xz}}\\\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(x-1\right)}{xy}}\end{matrix}\right.\)

    \(\Rightarrow\dfrac{1}{xyz}\ge8\sqrt{\dfrac{\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2}{\left(xyz\right)^2}}=\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)

    \(\Rightarrow1\ge8\left(x-1\right)\left(y-1\right)\left(z-1\right)\Rightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)

  • See question detail

    We have : \(A=x^2-xy+y^2=\left(x^2-xy+\dfrac{1}{4}y^2\right)+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x;y;A\ne0\)

  • See question detail

     \(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}=\left(\dfrac{4}{5}x+\dfrac{6}{5}x\right)+\left(\dfrac{4}{5}y+\dfrac{1}{5}y\right)+\dfrac{30}{x}+\dfrac{5}{y}\)

    \(=\left(\dfrac{4}{5}x+\dfrac{4}{5}y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)

    \(\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\)

    Because x; y is positive we have :

    \(\dfrac{6x}{5}+\dfrac{30}{x}\ge2\sqrt{\dfrac{6x}{5}.\dfrac{30}{x}}=2\sqrt{36}=12\) (Cauchy)

    \(\dfrac{y}{5}+\dfrac{5}{y}\ge2\sqrt{\dfrac{y}{5}.\dfrac{5}{y}}=2\)(Caychy)

    \(\Rightarrow\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge14\)

    We have \(x+y\ge10\Rightarrow\dfrac{4}{5}\left(x+y\right)\ge\dfrac{4}{5}.10=8\)

    \(\Rightarrow\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge14+8=22\)

    The equation occurs when \(x=y=5\)

    \(P_{min}=22\Leftrightarrow x=y=5\)

© HCEM 10.1.29.240
Crafted with by HCEM