MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 118 )
  • See question detail

    We see: 

    \(4=-2+6\)

    \(16=4+6+6\)

    So each number in the following arithmetic is less than 6 units than the after number. So \(m=4+6=10\)

  • See question detail

    \(n^2+7n+22=\left(n^2-2n+1\right)+9n+21=\left(n-1\right)^2+9n+21\)

    \(=\left(n-1\right)^2-3+9\left(n+2\right)\)

    \(n^2+7n+22⋮9\Leftrightarrow\left(n-1\right)^2-3⋮9\)

    Or \(\left(n-1\right)^2=9k+12\)\(=3\left(3k+2\right)\)

    Because there are no square number in the form 3k+2

    So \(n^2+7n+22⋮̸9\)

  • See question detail

    The integer which is multiplies of neither 2 nor 5 is ending by 0

    So they're: 10,20,30,40,50,60,70,80,90,100

    Their sum is: 10+20+...+100 = 550

  • See question detail

    Oh, right Alone

  • See question detail

    We have:

    \(a\ge3\) and \(b\ge3\)

    So \(a+b\ge6\)

    If a + b = 6 then a = 3; b = 3

    \(\Rightarrow a^2+b^2=3^2+3^2=18< 25\)

    So \(a+b>6\)

    Or \(a+b\ge7\)

  • See question detail

    We have:

    \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\)

    \(\Rightarrow\dfrac{x^2}{64}=\dfrac{xy}{24}=\dfrac{yz}{30}=\dfrac{xz}{80}\)

    Apply the same sequence properties, we have:

    \(\dfrac{x^2}{64}=\dfrac{xy}{24}=\dfrac{yz}{30}=\dfrac{xz}{80}=\dfrac{xy+yz+xz}{24+30+80}=\dfrac{1206}{134}=9\)

    So \(x^2=9.64=576\)\(\Rightarrow x=24\)

    \(\dfrac{xy}{24}=9\Rightarrow xy=24.9=216\Rightarrow y=9\)

    \(\dfrac{yz}{30}=9\Rightarrow yz=270\Rightarrow z=30\)

    So \(\left(x;y;z\right)=\left(24;9;30\right)\)

  • See question detail

    We see:

    \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)

    \(\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\)

    \(\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)( Because a,b,c > 0 )

    \(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

    Else: We have: \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(a< b,b\ne0;n>0\right)\)

    So \(\left\{{}\begin{matrix}\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\\\dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\\\dfrac{c}{a+c}< \dfrac{b+c}{a+b+c}\end{matrix}\right.\)

    \(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c+a+b+b+c}{a+b+c}=2\left(2\right)\)

    From (1) and (2) we have:

    \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

  • See question detail

    No pairs satisfy

  • See question detail

    According to the title, we have:

    99<a<110 and a is a prime number

    So a=103

    b is the greatest 1-digit number so b = 9

    a+b=103+9=112

  • See question detail

    We have:

    \(xy=1\Leftrightarrow y=\dfrac{1}{x}\)

    So \(\left|x+y\right|=\left|\dfrac{1}{x}+x\right|\)

    Other way:

    \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\left(a,b\ne0\right)\)

    So \(x+\dfrac{1}{x}\ge2\)

    And \(\left|x+\dfrac{1}{x}\right|\ge2\)

    Or \(\left|x+y\right|\ge2\)

    \(\left|x+y\right|_{Min}=2\Leftrightarrow x=y=1\)

  • See question detail

    We have:

    \(A=\left|x-3\right|+\left|x-7\right|\)

    \(=\left|x-3\right|+\left|7-x\right|\)

    \(\ge\left|x-3+7-x\right|=4\)

    Equal sign occurs \(\Leftrightarrow\left(x-3\right)\left(7-x\right)\ge0\)

    \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>7\end{matrix}\right.\end{matrix}\right.\)

    \(\Leftrightarrow3\le x\le7\)

    So \(A_{Min}=4\)\(\Leftrightarrow3\le x\le7\)  :)

  • See question detail

    We see:

    \(n!=1.2.3....n\)

    So \(\left(n!\right)^2=\left(1.2.3.....n\right)^2\)

    Because n>2 so n! > 1.2.n 

    So \(\left(n!\right)^2>\left(1.2.n\right)^2=4.n^2>n^2\)

  • See question detail

    Suppose: If all 9 numbers is smaller or equal than 1

    We see: 

    The sum of them is small or equal than 9

    So at least one of them must be bigger than 1 to have the sum 10 :)

  • See question detail

    She has the same number of apples and oranges

    \(\Rightarrow x=4y\)

    Or \(\dfrac{x}{y}=\dfrac{4}{1}\)

  • See question detail

    We have:

    \(8\sqrt{3}=\sqrt{8^2.3}=\sqrt{64.3}=\sqrt{192}\)

    \(5\sqrt{7}=\sqrt{5^2.7}=\sqrt{25.7}=\sqrt{175}\)

    Because 192>175 so \(\sqrt{192}>\sqrt{175}\)

    or \(8\sqrt{3}>5\sqrt{7}\) 

  • See question detail

    After using strawberries to make cake and make juice, Anna's strawberries left is: 

    708-12-20=676(strawberries)

    Anna is only has:

    676:708\(\approx0,95=95\%\)

  • See question detail

    We have:

    \(a^3+b^3=\left(a+b\right)\left(a^2+ab+b^2\right)=2\) (*)

    Other way:

    \(a^2+ab+b^2=a^2+2.\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)

    \(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)

    Because \(\left(a+\dfrac{1}{2}b\right)^2\ge0\) with \(\forall a,b\)

    \(\dfrac{3}{4}b^2\ge0\) with \(\forall b\)

    So \(\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\) with \(\forall a,b\)

    or \(a^2+ab+b^2\ge0\) with \(\forall a,b\) (**)

    From (*) and (**) we have  \(a+b\le2\)

    Your ex is so hard to do :) 

  • First
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
© HCEM 10.1.29.225
Crafted with by HCEM