-
See question detail
Call A=\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{999+1000}\)
We have A=\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{999\cdot1000}\)
\(\Rightarrow\)A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)
\(\Rightarrow\)A=\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{999}-\dfrac{1}{999}\right)-\dfrac{1}{1000}\)\(\Rightarrow\) A=\(1-\dfrac{1}{1000}=\dfrac{1000}{1000}-\dfrac{1}{1000}=\dfrac{999}{1000}\)
-
See question detail
Call A=a+b-c
We have |a|=2 \(\Rightarrow\) a = 2 or a = (-2)
|b|= 3 \(\Rightarrow\) b = 3 or b = (-3)
|c|= 4 \(\Rightarrow\) c = 4 or c = (-4)
\(\Rightarrow\)a = 2; b = 3;c = 4 or a = -2;b = -3;c = -4
But a > b > c ( theme for )
So a = -2;b = -3;c = -4 ( because -2 > -3 > -4 )Substitute a = -2;b = -3;c = -4 to A, we have :
A= -2+(-3)-(-4)
\(\Rightarrow\)A= -2-3+4
\(\Rightarrow\)A= -5+4
\(\Rightarrow\)A= -1
\(\Rightarrow\) a+b-c= -1 in a = -2;b = -3;c = -4