MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 2 )
  • See question detail

    A B C D E C' D' E' 1/6 1/3 C'' B'' D'' 1/6

    We have AB + BC + CD + DE = AB + BC' + C'D' + D'E' \(\ge AE'\)

    => min of (AB + BC + CD + DE) = AE' \(=\sqrt{\left(2\right)^2+\left(\dfrac{1}{3}+1+\dfrac{1}{6}\right)^2}=\dfrac{5}{2}\)

    When \(B\equiv B'',C'\equiv C'',D'\equiv D''\)

    We can infer positions of C, D.

  • See question detail

    In once hour, the first candle consumes 1/4 of its height, the second candle sonsumes 1/3 of its height. (note that the height of two candle is the same.)

    Assume after x hours, the first candle twice the height of the second, we have:

    \(1-\dfrac{1}{4}x=2\left(1-\dfrac{1}{3}x\right)\)

    \(\Rightarrow x=\dfrac{12}{5}=2.4\) (hours)

© HCEM 10.1.29.225
Crafted with by HCEM