MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • ASK A QUESTION
  • BLOG
  • Profile
  • Activity
  • Summary
  • Answers
  • questions
Answers ( 5 )
  • See question detail

    Have: n3 - 3n2 + 2 = n3 - n2 - 2n2 + 2

    = n2(n - 1) - 2n2 + 2

    It is easy to see that n2(n - 1) is an even number because it contains n(n - 1) which is the product of two consecutive natural numbers, so n2(n - 1) - 2n2 + 2 is an even number

    But n3 - 3n2 + 2 = n2(n - 1) - 2n2 + 2 is a prime number so n3 - 3n2 + 2 = 2

    => n3 - 3n2 = 0 

    <=> n2(n - 3) = 0

    According to the topic, n should be positive n = 3

  • See question detail

    Set x + 29 = t       (*)

    The given equation becomes: \(\dfrac{1}{t^2}+\dfrac{1}{\left(t+1\right)^2}=\dfrac{5}{4}\)

    \(\Leftrightarrow\dfrac{\left(t+1\right)^2+t^2}{t^2\left(t+1\right)^2}=\dfrac{5}{4}\)

    \(\Leftrightarrow\dfrac{t^2+2t+1+t^2}{t^2\left(t^2+1+2t\right)}=\dfrac{5}{4}\)

    \(\Leftrightarrow4\left(t^2+2t+1+t^2\right)=5t^2\left(t^2+1+2t\right)\)

    \(\Leftrightarrow\) 8t2 + 8t + 4 = 5t4 + 5t2 + 10t3

    \(\Leftrightarrow\) 5t4 + 10t3 - 3t2 - 8t - 4 = 0

    \(\Leftrightarrow\) 5t4 - 5t3 + 15t3 - 15t2 + 12t2 - 12t + 4t - 4 = 0

    \(\Leftrightarrow\left(t-1\right)\left(5t^3+15t^2+12t+4\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(5t^3+10t^2+5t^2+10t+2t+4\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(t+2\right)\left(5t^2+5t+2\right)=0\)

    \(\Leftrightarrow\left(t-1\right)\left(t+2\right).5.\left[\left(t+\dfrac{5}{4}\right)^2-\dfrac{93}{80}\right]=0\)

    \(\Rightarrow\left[{}\begin{matrix}t-1=0\\t+2=0\\\left(t+\dfrac{5}{4}\right)^2-\dfrac{93}{80}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\\\left(t+\dfrac{5}{4}\right)^2=\dfrac{93}{80}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-2\\t=\dfrac{-25+\sqrt{465}}{20}\\t=\dfrac{-25-\sqrt{465}}{20}\end{matrix}\right.\)

    Now just replace (*) is ok

  • See question detail

    + With n = 0, instead we have: 04 + 8.03 + 19.02 - 33.0 - 90 = 0

    <=> -90 = 0, nonsense

    + With n = 1, instead we have: 14 + 8.13 + 19.12 - 33.1 - 90 = 0

    <=> 1 + 8 + 19 - 33 - 90 = 0

    <=> -95 = 0, nonsense

    + With n = 2, instead we have: 24 + 8.23 + 19.22 - 33.2 - 90 = 0

    <=> 16 + 64 + 76 - 66 - 90 = 0

    <=> 0 = 0, always true

    + With \(n>2\), we have:

    \(n^4+8n^3+\dfrac{5}{2}n^2>2^4+8.2^3+\dfrac{5}{2}.2^2=90\)

    \(\dfrac{33}{2}n^2>\dfrac{33}{2}.2n=33n\)

    The two sides of the two inequalities above are:

    \(n^4+8n^3+19n^2>90+33n\)

    \(\Leftrightarrow n^4+8n^3+19n^2-33n-90>0\), contrary to the assumption

    So n = 2

  • See question detail

    \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)=\dfrac{3}{2}\)

    \(\Leftrightarrow\dfrac{x+1}{x}.\dfrac{y+1}{y}=\dfrac{3}{2}\)

    \(\Leftrightarrow\dfrac{x+1}{x}=\dfrac{3}{2}:\dfrac{y+1}{y}=\dfrac{3y}{2y+2}\)

    \(\Leftrightarrow\left(x+1\right)\left(2y+2\right)=3xy\)

    \(\Leftrightarrow2xy+2y+2x+2=3xy\)

    \(\Leftrightarrow2y+2x+2-xy=0\)

    \(\Leftrightarrow2\left(x-2\right)-y\left(x-2\right)+6=0\)

    \(\Leftrightarrow\left(2-x\right)\left(y-2\right)=-6\)

    \(\Leftrightarrow\left(x-2\right)\left(y-2\right)=6\)

    \(\Rightarrow6⋮x-2\) 

    But x;y be positive integer should \(x-2\ge-1;y-2\ge-1\)

    \(\Rightarrow x-2\in\left\{1;2;3;6\right\}\)

    \(\Rightarrow x\in\left\{3;4;5;8\right\}\)

    The corresponding value of y is: 8; 5; 4; 3

  • See question detail

    a) First of all, we prove sub-equality: \(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{1}{1+xy}\)

    \(\Leftrightarrow\left(1+xy\right)\left[\left(1+y\right)^2+\left(1+x\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)

    \(\Leftrightarrow\left(1+xy\right)\left(1+y^2+2y+1+x^2+2x\right)\ge\left[\left(1+x\right)\left(1+y\right)\right]^2\)

    \(\Leftrightarrow\left(1+xy\right)\left[2\left(1+x+y\right)+x^2+y^2\right]\ge\left[1+x+y+xy\right]^2\)

    \(\Leftrightarrow2\left(1+xy\right)\left(1+x+y\right)+\left(1+xy\right)\left(x^2+y^2\right)\)\(\ge\left(1+x+y\right)^2+x^2y^2+2\left(1+x+y\right)xy\)

    \(\Leftrightarrow2xy\left(1+x+y\right)+2\left(1+x+y\right)+x^2+y^2+xy\left(x^2+y^2\right)\ge1+x^2+y^2+2\left(x+xy+y\right)+x^2y^2+2\left(1+x+y\right)xy\)

    \(\Leftrightarrow1+xy\left(x^2+y^2\right)\ge2xy+x^2y^2\)

    \(\Leftrightarrow xy\left(x^2+y^2-2xy\right)+\left(x^2y^2-2xy+1\right)\ge0\)

    \(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\), always true for x;y positive

    Apply to my article:

    \(\left(\dfrac{1}{1+a}\right)^2+\left(\dfrac{1}{1+b}\right)^2+\left(\dfrac{1}{1+c}\right)^2\ge\)\(\dfrac{1}{1+ab}+\left(\dfrac{1}{1+c}\right)^2\)

                                                                       \(\ge\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{\left(1+c\right)^2}=\dfrac{c}{c+1}+\dfrac{1}{\left(c+1\right)^2}\)

                                                                       \(\ge\dfrac{c^2+c+1}{c^2+2c+1}\)

    Need to prove: \(\dfrac{c^2+c+1}{c^2+2c+1}\ge\dfrac{3}{4}\)

    \(\Leftrightarrow4c^2+4c+4\ge3c^2+6c+3\)

    \(\Leftrightarrow\)\(c^2-2c+1\ge0\)

    \(\Leftrightarrow\left(c-1\right)^2\ge0\)

    The "=" sign occurs when a = b = c = 1

© HCEM 10.1.29.225
Crafted with by HCEM