MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
...

My Name Does Not Have To Ask

My Name Does Not Have To Ask

260 Follower
180 Following
2000 Questions
  • Activities 5
  • Profile
  • Menu
    • Activities 5
    • Profile
  • My Name Does Not Have To Askanswered a question

    05/07/2017 at 14:25

    \(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{998\cdot999\cdot1000}\)

    Apply formula : \(\dfrac{2n}{a\left(a+n\right)\left(a+2n\right)}=\dfrac{1}{a\left(a+n\right)}-\dfrac{1}{\left(a+n\right)\left(a+2n\right)}\)

    \(2.B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{998\cdot999\cdot1000}\)

    \(2.B=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{998\cdot999}-\dfrac{1}{999\cdot1000}\)

    \(2.B=\dfrac{1}{1\cdot2}-\dfrac{1}{999\cdot1000}\)

    \(2B=\dfrac{499499}{999000}\)

    \(\Rightarrow B=\dfrac{499499}{1998000}\)

Show more
© HCEM 10.1.29.225
Crafted with by HCEM