Answers ( 1 )
-
See question detail
taking modulo. enumerating solutions \item factoring (SFFT) \item infinite descent \item Iurie's ``parameterization" trick. (IMO ??/6: Let $a>b>c>d$ be positive integers and suppose \[ ac+bd=(b+d+a-c)(b+d-a+c). \] Prove that $ab+cd$ is not prime. \item Constructing solutions \item geometric methods (Minkowski) \end{enumerate} \end{enumerate} \section{Linear Diophantine Equations} An equation of the form \begin{equation} a_1 x_1+ \dots + a_n x_n =b, \label{eq1} \end{equation} where $a_1,\dots,a_n,b \in \mathbb{Z}$ is called linear diophantine equation. \begin{thm} The equation (\ref{eq1}) is solvable if and only if $\gcd(a_1,\dots,a_n)\mid b$. \end{thm} \begin{proof} Let $d=\gcd(a_1,\dots,a_n)$. If $d\nmid b$ the equation is not solvable. If $d\mid b$ we denote $a_i'=\cfrac{a_i}{d}, \ b'=\cfrac{b}{d}$. Then $\gcd(a_1',\dots,a_n')=1$ and the generalized B\'{e}zout Lemma says that there exist $x_i'$ such that $a_1'x_1'+\dots +a_n' x_n'=1$, which implies $a_1x_1'+\dots +a_nx_n'=d$. We obtain $a_1(b'x_1')+\dots +a_n(b'x_n')=b'd=b.$ \end{proof} \begin{cor} Let $a_1,a_2$ be relatively prime integers. If $(x_1^0,x_2^0)$ is a solution to the equation $$a_1x_1+a_2x_2=b, $$ then all its solutions are given by \begin{equation*} \begin{cases} x_1=x_1^0+a_2 t \\ x_2=x_2^0-a_1 t \end{cases} ,t\in \mathbb{Z}. \end{equation*} \end{cor} \begin{prb} Solve the equation $$15x+84y=39. $$ \end{prb} \begin{proof} The equation is equivalent to $5x+28y=13$. A solution is $y=1, \ x=-3$. All solutions are of the form $x=-3+28 - View more →