-
Chibi 11/04/2017 at 11:31
Center of the circle: ABC
=> AB = BC = AC = 2R = 4
=> ABC is a equilateral triangle
The area for the shaded region: S
The area for a sector definition by A and 2 tangential points: SA
S = SABC - 3SA
SABC = \(\dfrac{1}{2}\).4.4.\(\dfrac{\sqrt{3}}{2}\) = 4\(\sqrt{3}\)
SA = \(\dfrac{60}{360}\)Scircles = \(\dfrac{1}{6}\)\(\pi\)22 = \(\dfrac{2\pi}{3}\)
=> S = 4\(\sqrt{3}\) - 3\(\dfrac{2\pi}{3}\) = 4\(\sqrt{3}\) - 2\(\pi\)
Selected by MathYouLike -
FA KAKALOTS 28/01/2018 at 22:09
Center of the circle: ABC
=> AB = BC = AC = 2R = 4
=> ABC is a equilateral triangle
The area for the shaded region: S
The area for a sector definition by A and 2 tangential points: SA
S = SABC - 3SA
SABC = 12
.4.4.√32 = 4√3
SA = 60360
Scircles = 16π22 = 2π3
=> S = 4√3
- 32π3 = 4√3 - 2π
-
tth 05/11/2017 at 19:11
Center of the circle: ABC=> AB = BC = AC = 2R = 4
=> ABC is a equilateral triangle
The area for the shaded region: S
The area for a sector definition by A and 2 tangential points: SA
S = SABC - 3SA
SABC = 12
.4.4.√32 = 4√3
SA = 60360
Scircles = 16π22 = 2π3=> S = 4√3
- 32π3 = 4√3 - 2π