MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

london

11/04/2017 at 10:44
Answers
3
Follow

 Given three circles of radius 2, tangent to each other as shown in the following diagram, what is the area for the shaded region? 

undefined


area


    List of answers
  • ...
    Chibi 11/04/2017 at 11:31

    Center of the circle: ABC

    => AB = BC = AC = 2R = 4

    => ABC is a equilateral triangle

    The area for the shaded region: S

    The area for a sector definition by A and 2 tangential points: SA

    S = SABC - 3SA

    SABC = \(\dfrac{1}{2}\).4.4.\(\dfrac{\sqrt{3}}{2}\) = 4\(\sqrt{3}\)

    SA = \(\dfrac{60}{360}\)Scircles = \(\dfrac{1}{6}\)\(\pi\)22 = \(\dfrac{2\pi}{3}\)

    => S = 4\(\sqrt{3}\) - 3\(\dfrac{2\pi}{3}\) = 4\(\sqrt{3}\) - 2\(\pi\)

    Selected by MathYouLike
  • ...
    FA KAKALOTS 28/01/2018 at 22:09

    Center of the circle: ABC

    => AB = BC = AC = 2R = 4

    => ABC is a equilateral triangle

    The area for the shaded region: S

    The area for a sector definition by A and 2 tangential points: SA

    S = SABC - 3SA

    SABC = 12

    .4.4.√32 = 4√3

    SA = 60360

    Scircles = 16π22 = 2π3

    => S = 4√3

     - 32π3 = 4√3 - 2π

  • ...
    tth 05/11/2017 at 19:11


        Center of the circle: ABC

        => AB = BC = AC = 2R = 4

        => ABC is a equilateral triangle

        The area for the shaded region: S

        The area for a sector definition by A and 2 tangential points: SA

        S = SABC - 3SA

        SABC = 12

    .4.4.√32 = 4√3

    SA = 60360
    Scircles = 16π22 = 2π3

    => S = 4√3
     - 32π3 = 4√3 - 2π


Post your answer

Please help london to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM