MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

John

10/03/2017 at 15:29
Answers
2
Follow

Calculate the crossed area in the figure below:

1


area


    List of answers
  • ...
    mathlove 11/03/2017 at 18:27

    undefined

    Let x is the area to calculate. We see that  EAD is equilateral triangle with the edge equal to 1, the equilateral line equal to \(\dfrac{\sqrt{3}}{2}\) . So \(EF=1-\dfrac{\sqrt{3}}{2}\) .

    We have  the angle EDC is \(30^0\) ,  so that \(\dfrac{1}{2}.\dfrac{1}{2}\left(1-\dfrac{\sqrt{3}}{2}\right)-\dfrac{x}{2}=\dfrac{\pi}{12}-\dfrac{1}{2}.1.1.\sin30^0=\dfrac{\pi}{12}-\dfrac{1}{4}\)

    So   \(x=1-\dfrac{\sqrt{3}}{4}-\dfrac{\pi}{6}\) .

                                           

    John selected this answer.
  • ...
    FA KAKALOTS 28/01/2018 at 22:10

    Let x is the area to calculate. We see that  EAD is equilateral triangle with the edge equal to 1, the equilateral line equal to √32 . So EF=1−√32

     .

    We have  the angle EDC is 300

     ,  so that 12.12(1−√32)−x2=π12−12.1.1.sin300=π12−14

    So   x=1−√34−π6

     .


Post your answer

Please help John to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM