MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Nhật Minh

04/04/2017 at 06:29
Answers
3
Follow

Prove that: 

 \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}< 1\)(n \(\in\)N*)


Fractioninequality


    List of answers
  • ...
    ¤« 19/02/2018 at 21:29

    34+536+7144+...+2n+1n2(n+1)2

    =1−122+122−132+132−142+...+1(n−1)2+1n2

    =1−1n2<1

  • ...
    Lê Quốc Trần Anh Coordinator 12/02/2018 at 09:27

    \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}\)

    \(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{\left(n-1\right)^2}+\dfrac{1}{n^2}\)

    \(=1-\dfrac{1}{n^2}< 1\)

  • ...
    FC Alan Walker 21/02/2018 at 17:38

    Ta có: \(\dfrac{2n+1}{n^2\left(n+1\right)^2}=\dfrac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)

    Do đó \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}\)

           \(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{n^2}-\dfrac{1}{\left(n+1\right)^2}\)

           \(=1-\dfrac{1}{\left(n+1\right)^2}< 1\)

    Vậy \(\dfrac{3}{4}+\dfrac{5}{36}+\dfrac{7}{144}+...+\dfrac{2n+1}{n^2\left(n+1\right)^2}< 1\forall n\in\)N*

                   


Post your answer

Please help Nguyễn Nhật Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM