Nguyễn Nhật Minh
02/04/2017 at 22:06-
Nguyễn Huy Tú 03/04/2017 at 13:03
\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\)
\(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\)
\(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)
So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)
Nguyễn Nhật Minh selected this answer. -
AI kết bạn với mình là may mắn cả đời 04/04/2017 at 21:05
\( \dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)
-
Indrace AD-MIN 07/04/2017 at 21:35
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14
-
FA KAKALOTS 28/01/2018 at 22:16
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14
-
FA KAKALOTS 28/01/2018 at 22:08
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14
-
FA KAKALOTS 28/01/2018 at 22:07
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14
-
Cristiano Ronaldo 02/08/2018 at 11:52
\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+......+\dfrac{1}{n^3}< \dfrac{1}{4}\)
-
¤« 18/04/2018 at 13:06
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)
=12(21.2.3+22.3.4+...+2(n−1)n(n+2))
=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))
=12(12−1n(n+2))
=14.12n(n+2)
⇒123+133+...+1n3<14−12n(n+2)<14
⇒123+133+...+1n3<14
So 123+133+...+1n3<14
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)
=12(21.2.3+22.3.4+...+2(n−1)n(n+2))
=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 -
FA KAKALOTS 03/02/2018 at 12:36
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)
=12(21.2.3+22.3.4+...+2(n−1)n(n+2))
=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))
=12(12−1n(n+2))
=14.12n(n+2)
⇒123+133+...+1n3<14−12n(n+2)<14
⇒123+133+...+1n3<14
So 123+133+...+1n3<14
123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14