MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Nhật Minh

02/04/2017 at 22:06
Answers
9
Follow

Prove that \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\left(n\in N;n\ge2\right)\)

Help me please!


Fractioninequality


    List of answers
  • ...
    Nguyễn Huy Tú 03/04/2017 at 13:03

    \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\)

    \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\)

    \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\)

    \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\)

    \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)

    So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)

    Nguyễn Nhật Minh selected this answer.
  • ...
    AI kết bạn với mình là may mắn cả đời 04/04/2017 at 21:05

    \( \dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+2\right)}\) \(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{\left(n-1\right)n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)}\right)\) \(=\dfrac{1}{4}.\dfrac{1}{2n\left(n+2\right)}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}-\dfrac{1}{2n\left(n+2\right)}< \dfrac{1}{4}\) \(\Rightarrow\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\) So \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)

  • ...
    Indrace AD-MIN 07/04/2017 at 21:35

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • ...
    FA KAKALOTS 28/01/2018 at 22:16

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • ...
    FA KAKALOTS 28/01/2018 at 22:08

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • ...
    FA KAKALOTS 28/01/2018 at 22:07

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • ...
    Cristiano Ronaldo 02/08/2018 at 11:52

    \(\dfrac{1}{2^3}+\dfrac{1}{3^3}+......+\dfrac{1}{n^3}< \dfrac{1}{4}\)

  • ...
    ¤« 18/04/2018 at 13:06

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)

    =12(21.2.3+22.3.4+...+2(n−1)n(n+2))

    =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))

    =12(12−1n(n+2))

    =14.12n(n+2)

    ⇒123+133+...+1n3<14−12n(n+2)<14

    ⇒123+133+...+1n3<14

    So 123+133+...+1n3<14

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14123+133+...+1n3<14123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(21.2.3+22.3.4+...+2(n−1)n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))=12(12−1n(n+2))=12(12−1n(n+2)) =14.12n(n+2)=14.12n(n+2)⇒123+133+...+1n3<14−12n(n+2)<14⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14⇒123+133+...+1n3<14 So 123+133+...+1n3<14

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)

    =12(21.2.3+22.3.4+...+2(n−1)n(n+2))
    =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14

  • ...
    FA KAKALOTS 03/02/2018 at 12:36

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2)

    =12(21.2.3+22.3.4+...+2(n−1)n(n+2))

    =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2))

    =12(12−1n(n+2))

    =14.12n(n+2)

    ⇒123+133+...+1n3<14−12n(n+2)<14

    ⇒123+133+...+1n3<14

    So 123+133+...+1n3<14

    123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14 123+133+...+1n3<11.2.3+12.3.4+...+1(n−1)n(n+2) =12(21.2.3+22.3.4+...+2(n−1)n(n+2)) =12(11.2−12.3+12.3−13.4+...+1(n−1)n−1n(n+2)) =12(12−1n(n+2)) =14.12n(n+2) ⇒123+133+...+1n3<14−12n(n+2)<14 ⇒123+133+...+1n3<14 So 123+133+...+1n3<14


Post your answer

Please help Nguyễn Nhật Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM