MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Nhật Minh

02/04/2017 at 11:25
Answers
2
Follow

Prove that E = \(\dfrac{1}{3^3}+\dfrac{1}{4^3}+\dfrac{1}{5^3}+...+\dfrac{1}{n^3}< \dfrac{1}{12}\).


Fractioninequality


    List of answers
  • ...
    FA KAKALOTS 28/01/2018 at 22:08

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    ⇒1n3<1(n−1)n(n+1)

    1(n−1)n(n+1)=1n.1(n−1)(n+1)

    =1n.(n+1)−(n−1)(n−1)(n+1).12=12.1n.(1n−1−1n+1)

    =12.(1(n−1)n−1n(n+1))

    Now we have :

    E < 12.3.4+13.4.5+14.5.6+...+1(n−1)n(n+1)

    =12(12.3−13.4)+12(13.4−14.5)+12(14.5−15.6)+...+12(1(n−1)n−1n(n+1))

    =12(12.3−1n(n+1))=112−12n(n+1)<112

    Hence,E<112

  • ...
    Phan Thanh Tinh Coordinator 24/04/2017 at 13:50

    For any natural number n > 1,we have :

    (n - 1)n(n + 1) = n(n2 - 1) = n3 - n < n3

    \(\Rightarrow\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(\dfrac{1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{n}.\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

    \(=\dfrac{1}{n}.\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}.\dfrac{1}{2}=\dfrac{1}{2}.\dfrac{1}{n}.\left(\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

    \(=\dfrac{1}{2}.\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    Now we have :

    E < \(\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+\dfrac{1}{2}\left(\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)+\dfrac{1}{2}\left(\dfrac{1}{4.5}-\dfrac{1}{5.6}\right)+...+\dfrac{1}{2}\left(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\right)\)

    \(=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{12}-\dfrac{1}{2n\left(n+1\right)}< \dfrac{1}{12}\)

    Hence,\(E< \dfrac{1}{12}\)


Post your answer

Please help Nguyễn Nhật Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM