MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

donald trump

27/03/2017 at 14:06
Answers
2
Follow

The greatest common divisor of a and b is 8 . Their lowest common multiple is 96

a+b = ? 


GCD and LCM


    List of answers
  • ...
    FA KAKALOTS 09/02/2018 at 22:02

    Let [a,b] be the LCM of a and b, and (a,b) be the GCD of a and b.

    Since (a,b) = 8, [a,b] = 96, then a ×

     b = [a,b] × (a,b) = 96 ×

     8 = 768.

    As (a,b) = 8, let a = 8m, b = 8n, in which (m,n) = 1.

    => a ×

     b = 8m × 8n = 768. Thus, m × n = 768 ÷ (8 ×

     8) = 12.

    (m,n) = 1, so all the pairs (m;n) which have GCD = 1 and m ×

     n = 12 are:

    (1;12),(3;4),(4;3),(12;1).

    => (a;b) = (8;96),(24;32),(32;24),(96;8).

    Therefore, there are 2 possible values of a + b: 8+ 96 = 104, 24 + 32 = 56.

    Answer. 104 and 56

  • ...
    Nguyễn Nhật Minh 29/05/2017 at 12:30

    Let [a,b] be the LCM of a and b, and (a,b) be the GCD of a and b.

    Since (a,b) = 8, [a,b] = 96, then a \(\times\) b = [a,b] \(\times\) (a,b) = 96 \(\times\) 8 = 768.

    As (a,b) = 8, let a = 8m, b = 8n, in which (m,n) = 1.

    => a \(\times\) b = 8m \(\times\) 8n = 768. Thus, m \(\times\) n = 768 \(\div\) (8 \(\times\) 8) = 12.

    (m,n) = 1, so all the pairs (m;n) which have GCD = 1 and m \(\times\) n = 12 are:

    (1;12),(3;4),(4;3),(12;1).

    => (a;b) = (8;96),(24;32),(32;24),(96;8).

    Therefore, there are 2 possible values of a + b: 8+ 96 = 104, 24 + 32 = 56.

    Answer. 104 and 56


Post your answer

Please help donald trump to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM