MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

15/04/2019 at 10:36
Answers
1
Follow

33) Solve the equations:
\(\left\{{}\begin{matrix}x^2+2xy-y^2=2\\x^2+xy+y^2=3\end{matrix}\right.\)




    List of answers
  • ...
    Nguyễn Linh Chi 09/08/2019 at 10:37

    My approach:

    \(\left\{{}\begin{matrix}3x^2+6xy-3y^2=6\\2x^2+2xy+2y^2=6\end{matrix}\right.\)

    It implies that

     \(\left(3x^2+6xy-3y^2\right)-\left(2x^2+2xy+2y^2\right)=6-6=0\)

      \(x^2+4xy-5y^2=0\)

        \(\left[{}\begin{matrix}x=y\\x=5y\end{matrix}\right.\)

    Case 1: x=y, subtitute to (1) we have 

    \(x^2=1\) \(\Leftrightarrow\) \(x=\pm1\)

    Then we get 


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM