Lê Anh Duy
15/04/2019 at 10:36-
Nguyễn Linh Chi 09/08/2019 at 10:37
My approach:
\(\left\{{}\begin{matrix}3x^2+6xy-3y^2=6\\2x^2+2xy+2y^2=6\end{matrix}\right.\)
It implies that
\(\left(3x^2+6xy-3y^2\right)-\left(2x^2+2xy+2y^2\right)=6-6=0\)
\(x^2+4xy-5y^2=0\)
\(\left[{}\begin{matrix}x=y\\x=5y\end{matrix}\right.\)
Case 1: x=y, subtitute to (1) we have
\(x^2=1\) \(\Leftrightarrow\) \(x=\pm1\)
Then we get