Lê Anh Duy
04/03/2019 at 15:28-
FacuFeri 06/03/2019 at 05:13
We have : \(x^2-180x+8102=\left(x^2-180x+8100\right)+2=\left(x-90\right)^2+2\ge2\forall x\left(1\right)\)
Applying the Bunhiacopxki inequality , we have :
\(\left(\sqrt{x-89}+\sqrt{91-x}\right)^2\le\left(1+1\right)\left(x-89+91-x\right)\)
\(\Rightarrow\left(\sqrt{x-89}+\sqrt{91-x}\right)^2\le2.2=4\)
\(\Rightarrow\sqrt{x-89}+\sqrt{91-x}\le2\left(2\right)\)
Because \(\sqrt{x-89}+\sqrt{91-x}=x^2-180x+8102\)
So ( 1 ) ; ( 2 ) ; we have : \(\sqrt{x-89}+\sqrt{91-x}=x^2-180x+8102=2\)
Equal sign occurs \(\Leftrightarrow\sqrt{x-89}=\sqrt{91-x};x-90=0\left(3\right)\)
We have : \(\sqrt{x-89}=\sqrt{91-x}\) \(\Leftrightarrow x-89=91-x\Leftrightarrow x=90\left(4\right)\)
( 3 ) ; ( 4 ) \(\Rightarrow x=90\) is the result of the equation
Lê Anh Duy selected this answer. -
Huy Toàn 8A (TL) 06/03/2019 at 13:14
Đk : \(89\le x\le91\)
Applying the Bunhiacopxki inequality
We have : VT \(=1.\sqrt{x-89}+1.\sqrt{91-x}\le\sqrt{\left(1+1\right)\left(x-89+91-x\right)=2}\)
=> VT \(\le2\)
And VP = \(x^2-2.x.90+90^2+2=\left(x-90\right)^2+2\ge2\)
=> VP \(\ge2\ge\) VT
The sign "=" occurs when and only when:
\(\left\{{}\begin{matrix}\sqrt{x-89}=\sqrt{91-x}\\x-90=0\end{matrix}\right.\) => \(x=90\)(satisfy)
The answer is 90
-
FacuFeri 05/03/2019 at 05:10
Tran Anh ??? Le Quoc Tran Anh ???