Lê Anh Duy
27/02/2019 at 10:19-
Huy Toàn 8A (TL) 01/03/2019 at 04:38
\(P=\left(\dfrac{30}{x}+\dfrac{6x}{5}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\ge2.\sqrt{\dfrac{30}{x}+\dfrac{6x}{5}}+2.\sqrt{\dfrac{y}{5}+\dfrac{5}{y}}+\dfrac{4}{5}.10\)
\(P=2.6+2.1+8=22\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{30}{x}=\dfrac{6x}{5}\\\dfrac{y}{5}=\dfrac{5}{y}\\x+y=10\end{matrix}\right.=>\left\{{}\begin{matrix}x^2=25\\y^2=25\\x+y=10\end{matrix}\right.\)
\(=>x=y=5\)
\(Pmin=22< =>x=y=5\)
-
Huy Toàn 8A (TL) 28/02/2019 at 14:06
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}=\left(x+y\right)\left(\dfrac{5}{x}+\dfrac{5}{y}\right)+\left(\dfrac{25}{x}+x\right)\)
\(\left\{{}\begin{matrix}x>0=>x=\left(\sqrt{x}\right)^2\\y>0=>y=\left(\sqrt{y}\right)^2\end{matrix}\right.\)
\(P1=x+y\ge10\)
\(P2=\dfrac{5}{x}+\dfrac{5}{y}=5.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge5.\dfrac{4}{x+y}=\dfrac{5.4}{10}=2\) khi \(x=y\)
\(P3=\dfrac{25}{x}+x\ge2.\sqrt{\dfrac{25}{x}.x}=2.5=10\) khi \(x=5\)
\(P=\sum P\ge10+2+10=22\) khi \(\left(x;y\right)=\left(5;5\right)\)
Study well
-
Vui Ghét Nét 07/03/2019 at 03:53
Reference Lê Anh Duy
-
Lê Anh Duy 04/03/2019 at 11:01
Hey, stop copying the solutions from the Internet, please!?
-
FacuFeri 28/02/2019 at 15:44
I don't know why
\(\dfrac{5}{x}+\dfrac{5}{y}\ge5.\dfrac{4}{x+y}\ge5.\dfrac{4}{10}\)
Because I think \(\dfrac{4}{x+y}\le\dfrac{4}{10}=\dfrac{2}{5}\)