MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

27/02/2019 at 10:07
Answers
1
Follow

31) Let x,y are 2 positive real integers such that \(\sqrt{xy}\cdot\left(x-y\right)=x+y\)

Find the minimum value of \(P\) = x + y


Minimum


    List of answers
  • ...
    FacuFeri 10/05/2019 at 11:48

    hiu We have : \(\sqrt{xy\left(x-y\right)}=x+y\Leftrightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

    \(xy\left(x-y\right)^2=\dfrac{1}{4}.4xy\left[\left(x+y\right)^2-4xy\right]\le\dfrac{\left(x+y\right)^4}{16}\)

    so \(\left(x+y\right)^4\ge16\left(x+y\right)^2\)  \(\Leftrightarrow p^4-16p^2\ge0\Leftrightarrow p\ge4\)

    Equal sign occurs \(\Leftrightarrow x=2+\sqrt{2};b=2-\sqrt{2}\)


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM