Lê Anh Duy
27/02/2019 at 10:07-
FacuFeri 10/05/2019 at 11:48
We have : \(\sqrt{xy\left(x-y\right)}=x+y\Leftrightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)
\(xy\left(x-y\right)^2=\dfrac{1}{4}.4xy\left[\left(x+y\right)^2-4xy\right]\le\dfrac{\left(x+y\right)^4}{16}\)
so \(\left(x+y\right)^4\ge16\left(x+y\right)^2\) \(\Leftrightarrow p^4-16p^2\ge0\Leftrightarrow p\ge4\)
Equal sign occurs \(\Leftrightarrow x=2+\sqrt{2};b=2-\sqrt{2}\)