MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Anh Duy

27/02/2019 at 09:55
Answers
2
Follow

30) Let a, b, c are the length of a triangle. Prove that:

\(\dfrac{ab}{a+b-c}+\dfrac{bc}{b+c-a}+\dfrac{ca}{c+a-b}\ge a+b+c\)


inequality


    List of answers
  • ...
    FacuFeri 28/02/2019 at 15:58

    Put \(A=\dfrac{ab}{a+b-c}+\dfrac{bc}{b+c-a}+\dfrac{ac}{c+a-b}\)

    Because a ; b ; c are the length of a triangle so \(a+b-c;b+c-a;c+a-b>0\)

    Put \(a+b-c=x;b+c-a=y;c+a-b=z\)

    \(\Rightarrow\dfrac{x+y}{2}=b;\dfrac{y+z}{2}=c;\dfrac{x+z}{2}=a;a+b+c=x+y+z\) 

    We have : \(\dfrac{\left(x+y\right)\left(x+z\right)}{2.2x}+\dfrac{\left(x+y\right)\left(y+z\right)}{2.2y}+\dfrac{\left(x+z\right)\left(y+z\right)}{2.2z}\)

    \(=\dfrac{x\left(x+y+z\right)+yz}{4x}+\dfrac{y\left(x+y+z\right)+xz}{4y}+\dfrac{z\left(x+y+z\right)+xy}{4z}\)

    \(=\dfrac{x+y+z}{4}+\dfrac{x+y+z}{4}+\dfrac{x+y+z}{4}+\dfrac{yz}{4x}+\dfrac{xz}{4y}+\dfrac{xy}{4z}\)

    \(=\dfrac{3\left(x+y+z\right)}{4}+\dfrac{y^2z^2}{4xyz}+\dfrac{x^2z^2}{4xyz}+\dfrac{x^2y^2}{4xyz}\)

    Applying the inequality \(a^2+b^2+c^2\ge ab+bc+ac\) , we have :

    \(A\ge\dfrac{3\left(x+y+z\right)}{4}+\dfrac{xyz\left(x+y+z\right)}{4xyz}=x+y+z=a+b+c\)

    Equal sign occurs \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c\)

     
    Lê Anh Duy selected this answer.
  • ...
    Nguyễn Thị Linh 06/03/2019 at 23:34

    FacuFeri copy internet


Post your answer

Please help Lê Anh Duy to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM