MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Linh Đậu Nguyễn Huyền

03/10/2018 at 14:26
Answers
1
Follow

a,b,c \(\ge\)0, ab+bc+ac=3. Prove :

\(\dfrac{1}{a^2+2}+\dfrac{1}{b^2+2}+\dfrac{1}{c^2+2}\le1\)


AIMO


    List of answers
  • ...
    Dao Trong Luan Coordinator 03/10/2018 at 14:43

    We have: 

    \(a^2+b^2+c^2\ge ab+bc+ca\)

    The "=" happen when and only when a = b = c

    Applying the Cauchy-Schwarz inequality, we have:

    \(\dfrac{1}{a^2+2}+\dfrac{1}{b^2+2}+\dfrac{1}{c^2+2}\le\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2+2+2}\le\dfrac{9}{ab+bc+ca+6}=\dfrac{9}{9}=1\)

    So......................

    Selected by MathYouLike

Post your answer

Please help Linh Đậu Nguyễn Huyền to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM