-
jimin bts cute 08/08/2018 at 03:06
we put \(\left(a,b\right)=d\) inferred \(a=dm;b=d.n\) so in that \(\left(m,n\right)=1.\)
suppose \(a\le b\) then \(m\le n.\)
we have: \(ab=dm.dn=d^2m.n.\)
\(\left[a,b\right]=\dfrac{ab}{\left(a;b\right)}=\dfrac{d^2m.n}{d}=d.m.n\)
According to the post: \(\left[a,b\right]=210\) so \(d.m.n=210.\)
In that, \(d=\dfrac{ab}{\left[a,b\right]}=\dfrac{2940}{210}=14\) . So \(mn=\dfrac{210}{10}=15\)
We have following list:
\(m\) \(n\) \(a\) \(b\) \(1\) \(15\) \(14\) \(210\) \(3\) \(5\) \(42\) \(70\) -
jiminbts 08/08/2018 at 02:44
find 2 natural a and b with product of 2940 and smallest multiple is 210
-
jiminbts 08/08/2018 at 02:43
sorro mk dịch sang t.v nên nó không ra t.a