-
We have: \(x^2-3x+2=x^2-3x+2.25-0.25=x^2-2\times x\times1.5+\left(1.5\right)^2-0.25=\left(x-1.5\right)^2-0.25=0\)
\(\Rightarrow\left(x-1.5\right)^2=0.25\)
\(\Rightarrow x-1.5=\pm0.5\)
\(\Rightarrow x=\left\{1;2\right\}\)
So \(x=\left\{1;2\right\}\)
Huy Toàn 8A (TL) selected this answer. -
Sherlockkichi 06/08/2018 at 02:08
\(x^2-3x+2=0\)
I consider two cases
Case 1: \(\dfrac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)
\(=\dfrac{3+\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)
\(=\dfrac{4}{2.1}\)
= 2
Case 2: \(\dfrac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)
\(=\dfrac{3-\sqrt{\left(-3\right)^2-4.1.2}}{2.1}\)
\(=\dfrac{2}{2.1}\)
= 1
=> x = {2; 1}
So: x = {2; 1}