MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

kaity nguyen

03/08/2018 at 01:29
Answers
1
Follow

look for natural n for:

a,\(516^n\div516^{13}=516\)

b,\(8^n\div8=64\)

c,\(3427^6\div3427^n=3427^2\)




    List of answers
  • ...
    jimin bts cute 03/08/2018 at 01:45

    a,\(we\) \(have:\)\(516=516^n\div516^{13}=516^{n-13}\)

      \(but\)\(516=516^1.\) \(So\) \(that:\)  \(516^1=516^{n-13}.\) \(Inferred\): \(n-13=1.\)

    \(so :n=14\)

    b,\(3427^2=3427^6\div3427^n=3427^{6-n}.\) \(So\) \(that\)\(6-n=2\) \(or\) \(n=6-2.\) \(so : n=4\)

    c,\(we\) \(know:\) \(64=8^2\) \(and\) \(8=8^1\) \(so\) \(8^2=64=8^n\div8^1=8^{n-1}.\)

    \(so\) \(that:\) \(n-1=2.\) \(So\) \(n=3\)

    kaity nguyen selected this answer.

Post your answer

Please help kaity nguyen to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM