MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Quoc Tran Anh Le Coordinator

01/08/2018 at 02:13
Answers
1
Follow

Our number system is called Base10 because we start to repeat the sequencing of numbers after the number 9. It is possible to have any number system, even systems based on fractions.
Here is what the first nine numbers in Base9 look like:
                                                                      1 2 3 4 5 6 7 8 10
The number 9 in Base10 becomes the number 10 in Base9. How would you write the number 22 in Base10 in the Base9 system?


Math Puzzles


    List of answers
  • ...
    huynh anh phuong 02/08/2019 at 01:26

    Because the number 8 is not change, but 9 is split up, so the digit number of base9 is the remander after divde by 9, up there is the remainder after divide by 9, etc.

    So we have:

    \(A\left(base_{10}\right)=\left(a\equiv x\left(mod9\right)\right)\overline{10...00}+\left(a-\left(9\overline{x0...00}\right)\equiv y\left(mod9\right)\right)\overline{10...10}+...+\left(a-\left(9\overline{x0...00}-\left(...-\left(\overline{z0...00}\right)\overline{10...00}\right)...\right)\equiv t\left(mod9\right)\right)\left(base_9\right)\)

    Use this formula, we get:

    \(22\left(base_{10}\right)=\left(22\equiv2\left(mod9\right)\right)10+\left(22-2\times9\right)\equiv4\left(mod9\right)\left(base_9\right)\)

    So when write the number 22 in Base9, we get 24.


Post your answer

Please help Quoc Tran Anh Le to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM