Let a, b, c be other numbers 0 satisfying : \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{matrix}\right.\) Calculate \(p=a^{2019}+b^{2019}+c^{2019}\)
Let a, b, c be other numbers 0 satisfying : \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{matrix}\right.\)
Calculate \(p=a^{2019}+b^{2019}+c^{2019}\)