MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

25/06/2018 at 03:11
Answers
1
Follow

  In trapezoid ABCD, bases AB and CD are 13 and 39 units, respectively. Legs BC and DA are 24 and 10 units, respectively, and sides BC and DA lie on lines that are perpendicular to each other. What is the area of ABCD? 


Mathcounts


    List of answers
  • ...
    Nguyễn Mạnh Hùng 25/06/2018 at 07:40

    13 units 39 units 24 units 10 units E A B D C a b

    Call \(AD\perp BC=\left\{E\right\}\)

    We have: \(a^2+b^2=13^2=169\)(Pythagorean theorem in triangle EAB)

    We also have: 

    \(\left(a+10\right)^2+\left(b+24\right)^2=39^2=1521\)

    \(\Rightarrow a^2+20a+100+b^2+48b+576=1521\)

    \(\Rightarrow a^2+20a+b^2+48b=1521-576-100=845\)

    Because \(a^2+b^2=169\)

    \(\Rightarrow20a+48b=845-169=676\)

    \(\Rightarrow5a+12b=169\)

    \(a^2+b^2=169\)

    => \(\left\{{}\begin{matrix}a^2=5a\\b^2=12b\end{matrix}\right.\)

    \(\Rightarrow a=5;b=12\)

    => DE = 15

    BE = 12 

    => \(S_{DBE}=\dfrac{15.12}{2}=90\left(units^2\right)\)
    \(S_{ABE}=\dfrac{5.12}{2}=30\left(units^2\right)\)

    \(\Rightarrow S_{ABCD}=90-30=60\left(units^2\right)\)

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM