MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

25/06/2018 at 03:10
Answers
1
Follow

Equilateral triangle ABC has a side length of 6 units. Point D lies on segment BC such that DC = 2(BD). What is the length of the altitude of triangle ADC from point C? Express your answer as a common fraction in simplest radical form.


Mathcounts


    List of answers
  • ...
    Alone 25/06/2018 at 06:54

    A B C D H 6 K

    Draw AK is the altitude of triangle ABC(\(K\in BC\)),the altitude of triangle ADC from point C cut AD at I

    So \(BK=CK=\dfrac{1}{2}BC\)

    Applying Pitago's theorem we have:

     \(AK^2+CK^2=AC^2\Rightarrow AK^2=AC^2-CK^2=AC^2-\left(\dfrac{1}{2}BC\right)^2=6^2-3^2=27\)

    \(\Rightarrow AK=3\sqrt{3}\)\(\Rightarrow S_{ADC}=\dfrac{AK.CD}{2}=\dfrac{3\sqrt{3}.4}{2}=6\sqrt{3}\)

    Because BD+DK=BK \(\Rightarrow DK=BK-BD=3-2=1\)

    Applying Pitago's theorem in triangle ADK we have:

     \(AD^2=AK^2+DK^2=27+1^2=28\)\(\Rightarrow AD=2\sqrt{7}\)

    But \(S_{ADC}=6\sqrt{3}\)\(\Rightarrow\dfrac{AD.CH}{2}=6\sqrt{3}\Rightarrow AD.CH=12\sqrt{3}\Rightarrow CH=\dfrac{12\sqrt{3}}{2\sqrt{7}}=\dfrac{6\sqrt{21}}{7}\)

    Selected by MathYouLike

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM