MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

20/06/2018 at 02:54
Answers
4
Follow

If x and y are positive integers with x + y < 40, what is the largest possible product xy?




    List of answers
  • ...
    Alone 20/06/2018 at 07:22

    Because x,y integer so x+y integer so x+y \(\le39\)

    We have:\(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)

    \(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{38^2}{4}=361\)(Because \(39^2⋮̸4\))

    So maximum of xy is 361 when x=y=19

    Lê Quốc Trần Anh selected this answer.
  • ...
    Huỳnh Anh Phương 22/06/2018 at 02:24

    error:wrong question

  • ...
    Nguyễn Mạnh Hùng 21/06/2018 at 00:57

    Error, sr

  • ...
    Nguyễn Mạnh Hùng 21/06/2018 at 00:56

    We have: x + y < 40 

    => \(x+y\le39\)

    => \(\left(x+y\right)^2\le1521\)

    => \(x^2+2xy+y^2\le1521\)

    => \(xy\le\dfrac{1521-x^2-y^2}{2}\)


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM