Lê Quốc Trần Anh Coordinator
20/06/2018 at 02:54-
Alone 20/06/2018 at 07:22
Because x,y integer so x+y integer so x+y \(\le39\)
We have:\(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\le\dfrac{38^2}{4}=361\)(Because \(39^2⋮̸4\))
So maximum of xy is 361 when x=y=19
Lê Quốc Trần Anh selected this answer. -
Huỳnh Anh Phương 22/06/2018 at 02:24
error:wrong question
-
Nguyễn Mạnh Hùng 21/06/2018 at 00:57
Error, sr
-
Nguyễn Mạnh Hùng 21/06/2018 at 00:56
We have: x + y < 40
=> \(x+y\le39\)
=> \(\left(x+y\right)^2\le1521\)
=> \(x^2+2xy+y^2\le1521\)
=> \(xy\le\dfrac{1521-x^2-y^2}{2}\)