Lê Quốc Trần Anh Coordinator
13/06/2018 at 02:05-
Nguyễn Mạnh Hùng 13/06/2018 at 09:35
We have:
\(a^3+b^3=\left(a+b\right)\left(a^2+ab+b^2\right)=2\) (*)
Other way:
\(a^2+ab+b^2=a^2+2.\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)
Because \(\left(a+\dfrac{1}{2}b\right)^2\ge0\) with \(\forall a,b\)
\(\dfrac{3}{4}b^2\ge0\) with \(\forall b\)
So \(\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\) with \(\forall a,b\)
or \(a^2+ab+b^2\ge0\) with \(\forall a,b\) (**)
From (*) and (**) we have \(a+b\le2\)
Your ex is so hard to do :)
Lê Quốc Trần Anh selected this answer. -
Lê Thành 23/06/2018 at 05:27
We have:
a3+b3=(a+b)(a2+ab+b2)=2a3+b3=(a+b)(a2+ab+b2)=2 (*)
Other way:
a2+ab+b2=a2+2.12b+(12b)2+34b2a2+ab+b2=a2+2.12b+(12b)2+34b2
=(a+12b)2+34b2=(a+12b)2+34b2
Because (a+12b)2≥0(a+12b)2≥0 with ∀a,b∀a,b
34b2≥034b2≥0 with ∀b∀b
So (a+12b)2+34b2≥0(a+12b)2+34b2≥0 with ∀a,b∀a,b
or a2+ab+b2≥0a2+ab+b2≥0 with ∀a,b∀a,b (**)
From (*) and (**) we have a+b≤2a+b≤2
Your ex is so hard to do :)