MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

13/06/2018 at 02:05
Answers
2
Follow

Given \(a^3+b^3=2\) Prove that \(a+b\le2\)




    List of answers
  • ...
    Nguyễn Mạnh Hùng 13/06/2018 at 09:35

    We have:

    \(a^3+b^3=\left(a+b\right)\left(a^2+ab+b^2\right)=2\) (*)

    Other way:

    \(a^2+ab+b^2=a^2+2.\dfrac{1}{2}b+\left(\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)

    \(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\)

    Because \(\left(a+\dfrac{1}{2}b\right)^2\ge0\) with \(\forall a,b\)

    \(\dfrac{3}{4}b^2\ge0\) with \(\forall b\)

    So \(\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\) with \(\forall a,b\)

    or \(a^2+ab+b^2\ge0\) with \(\forall a,b\) (**)

    From (*) and (**) we have  \(a+b\le2\)

    Your ex is so hard to do :) 

    Lê Quốc Trần Anh selected this answer.
  • ...
    Lê Thành 23/06/2018 at 05:27

    We have:

    a3+b3=(a+b)(a2+ab+b2)=2a3+b3=(a+b)(a2+ab+b2)=2 (*)

    Other way:

    a2+ab+b2=a2+2.12b+(12b)2+34b2a2+ab+b2=a2+2.12b+(12b)2+34b2

    =(a+12b)2+34b2=(a+12b)2+34b2

    Because (a+12b)2≥0(a+12b)2≥0 with ∀a,b∀a,b

    34b2≥034b2≥0 with ∀b∀b

    So (a+12b)2+34b2≥0(a+12b)2+34b2≥0 with ∀a,b∀a,b

    or a2+ab+b2≥0a2+ab+b2≥0 with ∀a,b∀a,b (**)

    From (*) and (**) we have  a+b≤2a+b≤2

    Your ex is so hard to do :) 


Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM