MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Lê Quốc Trần Anh Coordinator

05/06/2018 at 02:04
Answers
1
Follow

Find n so that: \(1^n+2^n+3^n+4^n⋮5\)




    List of answers
  • ...
    Dao Trong Luan Coordinator 05/06/2018 at 03:56

    * With n = 4k+1 or n = 4k+3 \(\left(k\in N\right)\)

    \(\Rightarrow1^n+2^n+3^n+4^n\equiv1^n+2^n+\left(-2\right)^n+\left(-1\right)^n\equiv0\left(mod5\right)\)

    So \(1^n+2^n+3^n+4^n⋮5\)

    * With n = 4k+2

    \(\Rightarrow1^n+2^n+3^n+4^n\equiv1+2^{4k+2}+3^{4k+2}+4^{4k+2}\equiv1+4\cdot16^k+9\cdot81^k+16\cdot256^k\equiv1+4+9+16\equiv30\equiv0\left(mod5\right)\)

    So \(1^n+2^n+3^n+4^n⋮5\)

    * With n = 4k

    \(\Rightarrow1^n+2^n+3^n+4^n\equiv1+2^{4k}+3^{4k}+4^{4k}\equiv1+16^k+81^k+256^k\equiv1+1+1+1\equiv4\left(mod5\right)\)

    So \(1^n+2^n+3^n+4^n⋮̸5\)

    ==> With \(n\ne4k\Leftrightarrow1^n+2^n+3^n+4^n⋮5\) 

    Lê Quốc Trần Anh selected this answer.

Post your answer

Please help Lê Quốc Trần Anh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM