MathYouLike MathYouLike
  • Toggle menubar
  • Toggle fullscreen
  • Toggle Search
  •    Sign up
  • QUESTIONS
  • TAGS
  • USERS
  • BADGES
  • UNANSWERD
  • ASK A QUESTION
  • BLOG
...

Nguyễn Nhật Minh

21/03/2017 at 16:43
Answers
2
Follow

Given natural numbers, a and b, that sastify the expression: (a + 2016b) \(⋮\) 2017. Prove that:

A = (2a + 2015b)(3a + 2014b)...(2015a + 2b) \(⋮\) 20172014.

Help me please!


divisibility


    List of answers
  • ...
    Trịnh Đức Phát 22/03/2017 at 12:43

    We have: 

    ⇒a=2017n−2016b⇒a=2017n−2016b

    We have: 2a+2015b=2(2017n−2016b)+2015b=2.2017n−2017b⋮2017

    Same as above. We hava: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩3a+2014b=3.2017n−2.2017b⋮20174a+2013b=4.2017n−3.2017b⋮2017...2015a+2b=2015.2017n−2014.2017b

    So that: A⋮2017.2017...2017A⋮2017.2017...2017

    ⇒A⋮20172014

    Nguyễn Nhật Minh selected this answer.
  • ...
    ¤« 03/04/2018 at 13:33


    Trịnh Đức Phát 22/03/2017 at 12:43

    We have: 

    ⇒a=2017n−2016b

    We have: 2a+2015b=2(2017n−2016b)+2015b=2.2017n−2017b⋮2017

    Same as above. We hava: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩3a+2014b=3.2017n−2.2017b⋮20174a+2013b=4.2017n−3.2017b⋮2017...2015a+2b=2015.2017n−2014.2017b

    So that: A⋮2017.2017...2017

    ⇒A⋮20172014


Post your answer

Please help Nguyễn Nhật Minh to solve this problem!



Weekly ranking


© HCEM 10.1.29.225
Crafted with by HCEM